

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTS MARCH 2007 SENTRY EVENT

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

 Date Received
 03/15/07

Job#: KMEP-Norwalk

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B

				Reporting	Date	Date
		Parameter Co.	ncentration	Limit	Sampled	Analyzed
Client ID :	EXP-5	TPH-E (Fuel Product)	ND	0.10 mg/	′L 03/12/0′	7 03/17/07
Lab ID :	GMT07031527-01A	Surr: Nonane	91	%R		7 03/17/07
Euc ID .	GINTO/OSIGE/ OIII	TPH-P (GRO)	ND	0.050 mg/	L 03/12/07	7 03/19/07
		Surr: 1,2-Dichloroethane-d		%R		
		Surr: Toluene-d8	96	%R	EC 03/12/0 ²	7 03/19/07
		Surr: 4-Bromofluorobenzer	ne 97	%R	EC 03/12/0	7 03/19/07
Client ID :	GMW-0-14	TPH-E (Fuel Product)	1.3	0.10 mg/	L 03/12/07	7 03/17/07
Lab ID :	GMT07031527-02A	Surr: Nonane	95	%R	EC 03/12/07	7 03/17/07
		TPH-P (GRO)	4.7	1.0 mg/	L 03/12/07	7 03/19/07
		Surr: 1,2-Dichloroethane-d	4 107	%R	EC 03/12/0	7 03/19/07
		Surr: Toluene-d8	98	%R	EC 03/12/0	7 03/19/07
		Surr: 4-Bromofluorobenzer	ne 95	%R	EC 03/12/0	7 03/19/07
Client ID :	GMW-0-2	TPH-E (Fuel Product)	ND	0.10 mg	L 03/12/07	7 03/17/07
Lab ID :	GMT07031527-03A	Surr: Nonane	90	%R	EC 03/12/0	7 03/17/07
		TPH-P (GRO)	ND	0.050 mg	L 03/12/0	7 03/19/07
		Surr: 1,2-Dichloroethane-d	4 113	%R	EC 03/12/07	7 03/19/07
		Surr: Toluene-d8	98	%R	EC 03/12/07	7 03/19/07
		Surr: 4-Bromofluorobenzer	ne 97	%R	EC 03/12/0	7 03/19/07
Client ID :	GMW-0-1	TPH-E (Fuel Product)	ND	0.10 mg	L 03/12/0	7 03/17/07
Lab ID :	GMT07031527-04A	Surr: Nonane	92	. %R	EC 03/12/0	7 03/17/07
		TPH-P (GRO)	ND	0.050 mg	/L 03/12/07	7 03/19/07
		Surr: 1,2-Dichloroethane-d	4 115	%R	EC 03/12/0	7 03/19/07
		Surr: Toluene-d8	96	%R	EC 03/12/0	7 03/19/07
		Surr: 4-Bromofluorobenzer	ne 97	%R	EC 03/12/0	7 03/19/07
Client ID :	ZDS-1	TPH-E (Fuel Product)	4.8	0.10 mg	/L 03/12/0	7 03/17/07
Lab ID :	GMT07031527-05A	Surr: Nonane	100	%R	EC 03/12/0	7 03/17/07
		TPH-P (GRO)	4.4	1.0 mg	/L 03/12/0	7 03/19/07
		Surr: 1,2-Dichloroethane-d	4 109	%R	EC 03/12/0	7 03/19/07
		Surr: Toluene-d8	96	%R	EC 03/12/0	7 03/19/07
		Surr: 4-Bromofluorobenzer	ne 94	%R	EC 03/12/0	7 03/19/07
Client ID :	GMW-0-3	TPH-E (Fuel Product)	ND	0.10 mg	/L 03/13/0	7 03/17/07
Lab ID :	GMT07031527-06A	Surr: Nonane	93	%R	EC 03/13/0	7 03/17/07
		TPH-P (GRO)	0.051	0.050 mg	/L 03/13/0	7 03/19/07
		Surr: 1,2-Dichloroethane-d	4 114	%R	EC 03/13/0	
		Surr: Toluene-d8	93	%R	EC 03/13/0	7 03/19/07
		Surr: 4-Bromofluorobenzer	ne 95	%R	EC 03/13/0	7 03/19/07
Client ID :	PZ-5	TPH-E (Fuel Product)	ND	0.10 mg		
Lab ID :	GMT07031527-07A	Surr: Nonane	91	%R	EC 03/13/0	7 03/17/07
		TPH-P (GRO)	0.32	0.20 mg	/L 03/13/0	7 03/19/07
		Surr: 1,2-Dichloroethane-d	4 109	%R	EC 03/13/0	7 03/19/07
		Surr: Toluene-d8	97	%R	EC 03/13/0	7 03/19/07
		Surr: 4-Bromofluorobenzer	ne 99	0/ D	EC 03/13/0	7 03/19/07

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID :	PZ-10	TPH-E (Fuel Product)	1.1 *	0.10 mg/L	03/13/07	03/17/07
Lab ID :	GMT07031527-08A	Surr: Nonane	94	%REC	03/13/07	03/17/07
		TPH-P (GRO)	ND O	0.50 mg/L	03/13/07	03/23/07
		Surr: 1,2-Dichloroethane-d4	109	%REC	03/13/07	03/23/07
		Surr: Toluene-d8	98	%REC	03/13/07	03/23/07
		Surr: 4-Bromofluorobenzene	95	%REC	03/13/07	03/23/07
Client ID :	WCW-3	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/17/07
Lab ID :	GMT07031527-09A	Surr: Nonane	92	%REC	03/13/07	03/17/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/19/07
		Surr: 1,2-Dichloroethane-d4	114	%REC	03/13/07	03/19/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/19/07
		Surr: 4-Bromofluorobenzene	96	%REC	03/13/07	03/19/07
Client ID :	WCW-13	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/17/07
Lab ID :	GMT07031527-10A	Surr: Nonane	92	%REC	03/13/07	03/17/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	105	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	100	%REC	03/13/07	03/21/07
Client ID :	WCW-7	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-11A	Surr: Nonane	93	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	103	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	96	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	98	%REC	03/13/07	03/21/07
Client ID :	GMW-38	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-12A	Surr: Nonane	93	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	104	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	101	%REC	03/13/07	03/21/07
Client ID :	GMW-SF-7	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-13A	Surr: Nonane	92	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	105	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	101	%REC	03/13/07	03/21/07
Client ID :	EXP-2	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-14A	Surr: Nonane	91	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	105	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	101	%REC	03/13/07	03/21/07
Client ID :	GMW-1	TPH-E (Fuel Product)	2.0 *	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-15A	Surr: Nonane	95	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND O	1.0 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	107	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	98	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	98	%REC	03/13/07	03/21/07
Client ID :	GMW-36	TPH-E (Fuel Product)	7.2	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-16A	Surr: Nonane	90	%REC	03/13/07	03/18/07
		TPH-P (GRO)	54	20 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	109	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	96	%REC	03/13/07	03/21/07

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID :	MW-8	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-17A	Surr: Nonane	95	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	108	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	100	%REC	03/13/07	03/21/07
Client ID :	GMW-39	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-18A	Surr: Nonane	94	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	106	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	102	%REC	03/13/07	03/21/07
Client ID :	EXP-1	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-19A	Surr: Nonane	96	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	105	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	100	%REC	03/13/07	03/21/07
Client ID :	MW-SF-1	TPH-E (Fuel Product)	2.7 **	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-20A	Surr: Nonane	95	%REC	03/13/07	03/18/07
		TPH-P (GRO)	10	5.0 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	107	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	98	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	97	%REC	03/13/07	03/21/07
Client ID :	EXP-3	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-21A	Surr: Nonane	93	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND	0.050 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	105	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	98	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	100	%REC	03/13/07	03/21/07
Client ID :	ZDS-2	TPH-E (Fuel Product)	ND	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-22A	Surr: Nonane	97	%REC	03/13/07	03/18/07
		TPH-P (GRO)	0.34	0.20 mg/L	03/13/07	03/21/07
		Surr: 1,2-Dichloroethane-d4	109	%REC	03/13/07	03/21/07
		Surr: Toluene-d8	96	%REC	03/13/07	03/21/07
		Surr: 4-Bromofluorobenzene	99	%REC	03/13/07	03/21/07
Client ID :	ZDS-3	TPH-E (Fuel Product)	2.9 *	0.10 mg/L	03/13/07	03/18/07
Lab ID :	GMT07031527-23A	Surr: Nonane	95	%REC	03/13/07	03/18/07
		TPH-P (GRO)	ND O	1.0 mg/L	03/13/07	03/23/07
		Surr: 1,2-Dichloroethane-d4	111	%REC	03/13/07	03/23/07
		Surr: Toluene-d8	97	%REC	03/13/07	03/23/07
		Surr: 4-Bromofluorobenzene	97	%REC	03/13/07	03/23/07
Client ID :	TB-1	TPH-P (GRO)	ND	0.050 mg/L	03/12/07	03/21/07
Lab ID :	GMT07031527-24A	Surr: 1,2-Dichloroethane-d4	107	%REC	03/12/07	03/21/07
		Surr: Toluene-d8	99	%REC	03/12/07	03/21/07
		Surr: 4-Bromofluorobenzene	96	%REC	03/12/07	03/21/07

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

**Note: Reported TPH-E (Fuel Product) may contain undifferentiated diesel range hydrocarbons. *Note: Reported TPH-E (Fuel Product) is composed primarily of diesel range hydrocarbons. Gasoline Range Organics (GRO) C4-C13 O = Reporting Limits were increased due to sample foaming. ND = Not Detected

Roger Scholl Kandy Shultur Dalter Arrihum Roger L. Scholl, Ph.D., Laboratory Director · · Randy Gardner, Laboratory Manager · · Walter Hinchman, Quality Assurance Officer

Kandy Soulan Dalter Arihmer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-01A Client I.D. Number: EXP-5
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/12/07 Received: 03/15/07 Analyzed: 03/19/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	μg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	114		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	96		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	97		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Santur

Walter Hiridman

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-02A Client I.D. Number: GMW-0-14

Shiow-Whei Chou Attn: Phone: (949) 642-0245 Fax: (949) 642-4474

Sampled: 03/12/07 Received: 03/15/07 Analyzed: 03/19/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	10	µg/L	36	2-Hexanone	ND	100	µg/L
2	Chloromethane	ND	40	µg/L	37	Dibromochloromethane	ND	10	µg/L
3	Vinyl chloride	ND	10	µg/L	38	1,2-Dibromoethane (EDB)	ND	40	µg/L
4	Chloroethane	ND	10	µg/L	39	Tetrachloroethene	ND	10	µg/L
5	Bromomethane	ND	40	µg/L	40	1,1,1,2-Tetrachloroethane	ND	10	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	10	µg/L
7	Acetone	ND	200	µg/L	42	Ethylbenzene	26	5.0	µg/L
8	1,1-Dichloroethene	ND	10	µg/L	43	m,p-Xylene	310	5.0	µg/L
9	Dichloromethane	ND	40	µg/L	44	Bromoform	ND	10	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	10	µg/L
11	Carbon disulfide	ND	50	µg/L	46	o-Xylene	90	5.0	µg/L
12	trans-1,2-Dichloroethene	ND	10	µg/L	47	1,1,2,2-Tetrachloroethane	ND	10	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/L	48	1,2,3-Trichloropropane	ND	40	µg/L
14	1,1-Dichloroethane	ND	10	µg/L	49	Isopropylbenzene	10	10	µg/L
15	Vinyl acetate	ND	1,000	µg/L	50	Bromobenzene	ND	10	µg/L
16	2-Butanone (MEK)	ND	200	µg/L	51	n-Propylbenzene	16	10	µg/L
17	cis-1,2-Dichloroethene	ND	10	µg/L	52	4-Chlorotoluene	ND	10	µg/L
18	Bromochloromethane	ND	10	μg/L	53	2-Chlorotoluene	ND	10	µg/L
19	Chloroform	ND	10	µg/L	54	1,3,5-Trimethylbenzene	53	10	µg/L
20	2,2-Dichloropropane	ND	10	µg/L	55	tert-Butylbenzene	ND	10	µg/L
21	1,2-Dichloroethane	23	10	µg/L	56	1,2,4-Trimethylbenzene	200	10	µg/L
22	1,1,1-Trichloroethane	ND	10	µg/L	57	sec-Butylbenzene	ND	10	µg/L
23	1,1-Dichloropropene	ND	10	µg/L	58	1,3-Dichlorobenzene	ND	10	µg/L
24	Carbon tetrachloride	ND	10	µg/L	59	1,4-Dichlorobenzene	ND	10	µg/L
25	Benzene	1,000	5.0	µg/L	60	4-Isopropyltoluene	ND	10	µg/L
26	Dibromomethane	ND	10	µg/L	61	1,2-Dichlorobenzene	ND	10	µg/L
27	1,2-Dichloropropane	ND	10	µg/L	62	n-Butylbenzene	ND	10	µg/L
28	Trichloroethene	ND	10	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)	ND	60	µg/L
29	Bromodichloromethane	ND	10	µg/L	64	1,2,4-Trichlorobenzene	ND	40	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	50	µg/L	65	Naphthalene	ND	40	µg/L
31	cis-1,3-Dichloropropene	ND	10	µg/L	66	1,2,3-Trichlorobenzene	ND	40	µg/L
32	trans-1,3-Dichloropropene	ND	10	µg/L	67	Surr: 1,2-Dichloroethane-d4	107		%REC
33	1,1,2-Trichloroethane	ND	10	µg/L	68	Surr: Toluene-d8	98		%REC
34	Toluene	180	5.0	µg/L	69	Surr: 4-Bromofluorobenzene	95		%REC
35	1,3-Dichloropropane	ND	10	µg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Kandy Danlmer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Walter Alm. Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-03A Client I.D. Number: GMW-0-2
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/12/07 Received: 03/15/07 Analyzed: 03/19/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	μg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	113		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	98		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	97		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Saulman

Dalter Airihan

3/23/07

Report Date

Page 1 of 1

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-04A Client I.D. Number: GMW-0-1
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/12/07 Received: 03/15/07 Analyzed: 03/19/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	1.1	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP	ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	115		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	96		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	97		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Saulmer

Dalter Hiridmon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-05A Client I.D. Number: ZDS-1

Shiow-Whei Chou Attn: Phone: (949) 642-0245 Fax: (949) 642-4474

Sampled: 03/12/07 Received: 03/15/07

Analyzed: 03/19/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			LIA	within	u 024	/ 5 W 8200D			
			Reportir	ıg			Reporting		
	Compound	Concentration	Limit			Compound	Concentration	Limit	-
1	Dichlorodifluoromethane	ND	10	µg/L	36	2-Hexanone	ND	100	µg/L
2	Chloromethane	ND	40	μg/L	37	Dibromochloromethane	ND	10	µg/L
3	Vinyl chloride	ND	10	µg/L	38	1,2-Dibromoethane (EDB)	ND	40	µg/L
4	Chloroethane	ND	10	µg/L	39	Tetrachloroethene	ND	10	µg/L
5	Bromomethane	ND	40	μg/L	40	1,1,1,2-Tetrachloroethane	ND	10	µg/L
6	Trichlorofluoromethane	ND	10	μg/L	41	Chlorobenzene	ND	10	µg/L
7	Acetone	ND	200	μg/L	42	Ethylbenzene	24	5.0	µg/L
8	1,1-Dichloroethene	ND	10	μg/L	43	m,p-Xylene	290	5.0	µg/L
9	Dichloromethane	ND	40	μg/L	44	Bromoform	ND	.10	µg/L
10	Freon-113	ND	10	μg/L	45	Styrene	ND	10	µg/L
11	Carbon disulfide	ND	50	μg/L	46	o-Xylene	85	5.0	µg/L
12	trans-1,2-Dichloroethene	ND	10	µg/L	47	1,1,2,2-Tetrachloroethane	ND	10	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/L	48	1,2,3-Trichloropropane	ND	40	µg/L
14	1,1-Dichloroethane	ND	10	µg/L	49	Isopropylbenzene	ND	10	µg/L
15	Vinyl acetate	ND	1,000	µg/L	50	Bromobenzene	ND	10	µg/L
16	2-Butanone (MEK)	ND	200	µg/L	51	n-Propylbenzene	13	10	µg/L
17	cis-1,2-Dichloroethene	ND	10	µg/L	52	4-Chlorotoluene	ND	10	µg/L
18	Bromochloromethane	ND	10	µg/L	53	2-Chlorotoluene	ND	10	µg/L
19	Chloroform	ND	10	µg/L	54	1,3,5-Trimethylbenzene	49	10	µg/L
20	2,2-Dichloropropane	ND	10	µg/L	55	tert-Butylbenzene	ND	10	µg/L
21	1,2-Dichloroethane	23	10	µg/L	56	1,2,4-Trimethylbenzene	180	10	µg/L
22	1,1,1-Trichloroethane	ND	10	µg/L	57	sec-Butylbenzene	ND	10	µg/L
23	1,1-Dichloropropene	ND	10	µg/L	58	1,3-Dichlorobenzene	ND	10	µg/L
24	Carbon tetrachloride	ND	10	µg/L	59	1,4-Dichlorobenzene	ND	10	µg/L
25	Benzene	1,000	5.0	µg/L	60	4-Isopropyltoluene	ND	10	µg/L
26	Dibromomethane	ND	10	µg/L	61	1,2-Dichlorobenzene	ND	10	µg/L
27	1,2-Dichloropropane	ND	10	µg/L	62	n-Butylbenzene	ND	10	µg/L
28	Trichloroethene	ND	10	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)		60	µg/L
29	Bromodichloromethane	ND	10	µg/L	64	1,2,4-Trichlorobenzene	ND	40	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	50	µg/L	65	Naphthalene	ND	40	µg/L
31	cis-1,3-Dichloropropene	ND	10	µg/L	66	1,2,3-Trichlorobenzene	ND	40	µg/L
32	trans-1,3-Dichloropropene	ND	10	µg/L	67	Surr: 1,2-Dichloroethane-d4	109		%REC
33	1,1,2-Trichloroethane	ND	10	µg/L	68	Surr: Toluene-d8	96		%REC
34	Toluene	170	5.0	µg/L	69	Surr: 4-Bromofluorobenzene	94		%REC
35	1,3-Dichloropropane	ND	10	µg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Rogen Scholl

Kandys

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Walter 4 Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-06A Client I.D. Number: GMW-0-3
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/19/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	1.1	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
' 9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	μg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	μg/L	63	1,2-Dibromo-3-chloropropane (DBCP) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1.2.3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	114		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	93		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	95		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L	-				

ND = Not Detected

Roger Scholl

Kandy Saulur

Dalter Airihm

3/23/07

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-07A Client I.D. Number: PZ-5
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/19/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	2.0	µg/L	36	2-Hexanone	ND	20	µg/L
2	Chloromethane	ND	8.0	µg/L	37	Dibromochloromethane	ND	2.0	µg/L
3	Vinyl chloride	ND	2.0	µg/L	38	1,2-Dibromoethane (EDB)	ND	8.0	μg/L
4	Chloroethane	ND	2.0	µg/L	39	Tetrachloroethene	ND	2.0	µg/L
5	Bromomethane	ND	8.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	2.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	2.0	µg/L
7	Acetone	ND	40	µg/L	42	Ethylbenzene	ND	1.0	µg/L
8	1,1-Dichloroethene	ND	2.0	µg/L	43	m,p-Xylene	ND	1.0	µg/L
9	Dichloromethane	ND	8.0	µg/L	44	Bromoform	ND	2.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	2.0	µg/L
11	Carbon disulfide	ND	10	µg/L	46	o-Xylene	ND	1.0	µg/L
12	trans-1,2-Dichloroethene	ND	2.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	2.0	µg/L
13	Methyl tert-butyl ether (MTBE)	690	1.0	µg/L	48	1,2,3-Trichloropropane	ND	8.0	µg/L
14	1,1-Dichloroethane	ND	2.0	µg/L	49	Isopropylbenzene	ND	2.0	µg/L
15	Vinyl acetate	ND	200	µg/L	50	Bromobenzene	ND	2.0	µg/L
16	2-Butanone (MEK)	ND	40	µg/L	51	n-Propylbenzene	ND	2.0	µg/L
17	cis-1,2-Dichloroethene	ND	2.0	µg/L	52	4-Chlorotoluene	ND	2.0	µg/L
18	Bromochloromethane	ND	2.0	µg/L	53	2-Chlorotoluene	ND	2.0	µg/L
19	Chloroform	ND	2.0	µg/L	54	1,3,5-Trimethylbenzene	ND	2.0	µg/L
20	2,2-Dichloropropane	ND	2.0	µg/L	55	tert-Butylbenzene	ND	2.0	µg/L
21	1,2-Dichloroethane	ND	2.0	µg/L	56	1,2,4-Trimethylbenzene	ND	2.0	µg/L
22	1,1,1-Trichloroethane	ND	2.0	µg/L	57	sec-Butylbenzene	ND	2.0	µg/L
23	1,1-Dichloropropene	ND	2.0	µg/L	58	1,3-Dichlorobenzene	ND	2.0	µg/L
24	Carbon tetrachloride	ND	2.0	µg/L	59	1,4-Dichlorobenzene	ND	2.0	µg/L
25	Benzene	ND	1.0	µg/L	60	4-Isopropyltoluene	ND	2.0	µg/L
26	Dibromomethane	ND	2.0	µg/L	61	1,2-Dichlorobenzene	ND	2.0	µg/L
27	1,2-Dichloropropane	ND	2.0	µg/L	62	n-Butylbenzene	ND	2.0	µg/L
28	Trichloroethene	ND	2.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)	ND	12	µg/L
29	Bromodichloromethane	ND	2.0	µg/L	64	1,2,4-Trichlorobenzene	ND	8.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	2.0	µg/L	66	1,2,3-Trichlorobenzene	ND	8.0	µg/L
32	trans-1,3-Dichloropropene	ND	2.0	µg/L	67	Surr: 1,2-Dichloroethane-d4	109		%REC
33	1,1,2-Trichloroethane	ND	2.0	µg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	1.0	µg/L	69	Surr: 4-Bromofluorobenzene	99		%REC
35	1,3-Dichloropropane	ND	2.0	µg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Kandy Saulun

Walter Alm ilm

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date
Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-08A Client I.D. Number: PZ-10
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/23/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

				Reportir	ng				Reporti	ng
	Compound	Concentration		Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND		5.0	µg/L	36	2-Hexanone	ND	* 50	µg/L
2	Chloromethane	ND		20	µg/L	37	Dibromochloromethane	ND	5.0	µg/L
3	Vinyl chloride	ND		5.0	µg/L	38	1,2-Dibromoethane (EDB)	ND	20	µg/L
4	Chloroethane	ND		5.0	µg/L	39	Tetrachloroethene	ND	5.0	µg/L
5	Bromomethane	ND		20	µg/L	40	1,1,1,2-Tetrachloroethane	ND	5.0	µg/L
6	Trichlorofluoromethane	ND		10	µg/L	41	Chlorobenzene	ND	5.0	µg/L
7	Acetone	ND		100	µg/L	42	Ethylbenzene	ND	2.5	µg/L
8	1,1-Dichloroethene	ND		5.0	µg/L	43	m,p-Xylene	ND	2.5	µg/L
9	Dichloromethane	ND		20	µg/L	44	Bromoform	ND	5.0	µg/L
10	Freon-113	ND		10	µg/L	45	Styrene	ND	5.0	µg/L
11	Carbon disulfide	ND	*	25	µg/L	46	o-Xylene	ND	2.5	µg/L
12	trans-1,2-Dichloroethene	ND		5.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	5.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND		2.5	µg/L	48	1,2,3-Trichloropropane	ND	20	µg/L
14	1,1-Dichloroethane	ND		5.0	µg/L	49	Isopropylbenzene	ND	5.0	µg/L
15	Vinyl acetate	ND	*	500	µg/L	50	Bromobenzene	ND	5.0	µg/L
16	2-Butanone (MEK)	ND		100	µg/L	51	n-Propylbenzene	ND	5.0	µg/L
17	cis-1,2-Dichloroethene	ND		5.0	µg/L	52	4-Chlorotoluene	ND	5.0	µg/L
18	Bromochloromethane	ND		5.0	µg/L	53	2-Chlorotoluene	ND	5.0	µg/L
19	Chloroform	ND		5.0	µg/L	54	1,3,5-Trimethylbenzene	ND	5.0	µg/L
20	2,2-Dichloropropane	ND		5.0	µg/L	55	tert-Butylbenzene	ND	5.0	µg/L
21	1,2-Dichloroethane	ND		5.0	µg/L	56	1,2,4-Trimethylbenzene	ND	5.0	µg/L
22	1,1,1-Trichloroethane	ND		5.0	µg/L	57	sec-Butylbenzene	ND	5.0	µg/L
23	1,1-Dichloropropene	ND		5.0	µg/L	58	1,3-Dichlorobenzene	ND	5.0	µg/L
24	Carbon tetrachloride	ND		5.0	µg/L	59	1,4-Dichlorobenzene	ND	5.0	µg/L
25	Benzene	ND		2.5	µg/L	60	4-Isopropyltoluene	ND	5.0	µg/L
26	Dibromomethane	ND		5.0	µg/L	61	1,2-Dichlorobenzene	ND	5.0	µg/L
27	1,2-Dichloropropane	ND		5.0	µg/L	62	n-Butylbenzene	ND	5.0	µg/L
28	Trichloroethene	ND		5.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)) ND	30	µg/L
29	Bromodichloromethane	ND		5.0	µg/L	64	1,2,4-Trichlorobenzene	ND	20	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND		25	µg/L	65	Naphthalene	ND	20	μg/L
31	cis-1,3-Dichloropropene	ND		5.0	µg/L	66	1,2,3-Trichlorobenzene	ND	20	µg/L
32	trans-1,3-Dichloropropene	ND		5.0	µg/L	67	Surr: 1,2-Dichloroethane-d4	109		%REC
33	1,1,2-Trichloroethane	ND		5.0	µg/L	68	Surr: Toluene-d8	98		%REC
34	Toluene	ND		2.5	µg/L	69	Surr: 4-Bromofluorobenzene	95		%REC
35	1,3-Dichloropropane	ND		5.0	µg/L					

*Analyte analyzed separately on 3/19/07.

Reporting Limits were increased due to sample foaming.

ND = Not Detected

Roger Scholl

Kandy Dandmer

Walter Arihun

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-09A Client I.D. Number: WCW-3
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/19/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	μg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	μg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	μg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	μg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	μg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1.2.3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	114		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	96		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Danlmer

Dalter Hiridman

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-10A Client I.D. Number: WCW-13
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

	Reporting										
	Compound	Concentration	Limit			Compound	Concentration	Limit			
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L		
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L		
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L		
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L		
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L		
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L		
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L		
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L		
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L		
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L		
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L		
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L		
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L		
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L		
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L		
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L		
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L		
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L		
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L		
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L		
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L		
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L		
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L		
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L		
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L		
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L		
27	1,2-Dichloropropane	ND	1.0	μg/L	62	n-Butylbenzene	ND	1.0	µg/L		
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)) ND	5.0	µg/L		
29	Bromodichloromethane	ND	1.0	µg/L	64	1.2.4-Trichlorobenzene	ND	2.0	µg/L		
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L		
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L		
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	105		%REC		
33	1,1,2-Trichloroethane	ND	1.0	μg/L	68	Surr: Toluene-d8	97		%REC		
34	Toluene	ND	0.50	μg/L	69	Surr: 4-Bromofluorobenzene	100		%REC		
35	1,3-Dichloropropane	ND	1.0	µg/L			1	,	. –		

ND = Not Detected

Roger Scholl

Kandy Sandmar

Walter Airian

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-11A Client I.D. Number: WCW-7
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

		Reporting					Reporting		
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	μg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	μg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	5.4	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	μg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	μg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	μg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	32	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	103		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	96		%REC
34	Toluene	ND	0.50	μg/L	69	Surr: 4-Bromofluorobenzene	98		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Saulun

Dalter Airihm

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-12A Client I.D. Number: GMW-38
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

		Reportir	ng			Rep		ng	
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	104		%REC
33	1,1,2-Trichloroethane	ND	1.0	μg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	101		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Santur

Walter Airian

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-13A Client I.D. Number: GMW-SF-7
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

		Reportir	ng				Reporti	ng	
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	μg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND.	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	μg/L	63	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	μg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	μg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	105		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	101		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Sandmer

Walter Arihm

3/23/07

Report Date

Page 1 of 1

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants

510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-14A Client I.D. Number: EXP-2
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	105		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	101		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Dandmer

Walter Airian

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-15A Client I.D. Number: GMW-1
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

		Reportir	ng				Reporti	ng	
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	10	µg/L	36	2-Hexanone	ND	100	µg/L
2	Chloromethane	ND	40	µg/L	37	Dibromochloromethane	ND	10	µg/L
3	Vinyl chloride	ND	10	µg/L	38	1,2-Dibromoethane (EDB)	ND	40	µg/L
4	Chloroethane	ND	10	µg/L	39	Tetrachloroethene	ND	10	µg/L
5	Bromomethane	ND	40	µg/L	40	1,1,1,2-Tetrachloroethane	ND	10	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	10	µg/L
7	Acetone	ND	200	µg/L	42	Ethylbenzene	ND	5.0	µg/L
8	1,1-Dichloroethene	ND	10	µg/L	43	m,p-Xylene	ND	5.0	µg/L
9	Dichloromethane	ND	40	µg/L	44	Bromoform	ND	10	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	10	µg/L
11	Carbon disulfide	ND	50	µg/L	46	o-Xylene	ND	5.0	µg/L
12	trans-1,2-Dichloroethene	ND	10	µg/L	47	1,1,2,2-Tetrachloroethane	ND	10	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/L	48	1,2,3-Trichloropropane	ND	40	µg/L
14	1,1-Dichloroethane	ND	10	µg/L	49	Isopropylbenzene	ND	10	µg/L
15	Vinyl acetate	ND	1,000	µg/L	50	Bromobenzene	ND	10	µg/L
16	2-Butanone (MEK)	ND	200	µg/L	51	n-Propylbenzene	ND	10	µg/L
17	cis-1,2-Dichloroethene	ND	10	µg/L	52	4-Chlorotoluene	ND	10	µg/L
18	Bromochloromethane	ND	10	µg/L	53	2-Chlorotoluene	ND	10	µg/L
19	Chloroform	ND	10	μg/L	54	1,3,5-Trimethylbenzene	ND	10	µg/L
20	2,2-Dichloropropane	ND	10	µg/L	55	tert-Butylbenzene	ND	10	µg/L
21	1,2-Dichloroethane	ND	10	µg/L	56	1,2,4-Trimethylbenzene	ND	10	µg/L
22	1,1,1-Trichloroethane	ND	10	µg/L	57	sec-Butylbenzene	ND	10	µg/L
23	1,1-Dichloropropene	ND	10	µg/L	58	1,3-Dichlorobenzene	ND	10	µg/L
24	Carbon tetrachloride	ND	10	µg/L	59	1,4-Dichlorobenzene	ND	10	µg/L
25	Benzene	ND	5.0	µg/L	60	4-Isopropyltoluene	ND	10	µg/L
26	Dibromomethane	ND	10	µg/L	61	1,2-Dichlorobenzene	ND	10	µg/L
27	1,2-Dichloropropane	ND	10	µg/L	62	n-Butylbenzene	ND	10	µg/L
28	Trichloroethene	ND	10	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)	ND	60	µg/L
29	Bromodichloromethane	ND	10	µg/L	64	1,2,4-Trichlorobenzene	ND	40	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	50	µg/L	65	Naphthalene	ND	40	µg/L
31	cis-1,3-Dichloropropene	ND	10	µg/L	66	1,2,3-Trichlorobenzene	ND	40	µg/L
32	trans-1,3-Dichloropropene	ND	10	µg/L	67	Surr: 1,2-Dichloroethane-d4	107		%REC
33	1,1,2-Trichloroethane	ND	10	µg/L	68	Surr: Toluene-d8	98		%REC
34	Toluene	ND	5.0	μg/L	69	Surr: 4-Bromofluorobenzene	98		%REC
35	1,3-Dichloropropane	ND	10	µg/L					

Reporting Limits were increased due to sample foaming.

ND = Not Detected

Roger Scholl

Kandy Sandmer

Walter Al

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-16A Client I.D. Number: GMW-36
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

		Reportir	ng			Reporting			
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	200	µg/L	36	2-Hexanone	ND	2,000	µg/L
2	Chloromethane	ND	800	µg/L	37	Dibromochloromethane	ND	200	µg/L
3	Vinyl chloride	ND	200	µg/L	38	1,2-Dibromoethane (EDB)	ND	800	µg/L
4	Chloroethane	ND	200	µg/L	39	Tetrachloroethene	ND	200	µg/L
5	Bromomethane	ND	800	µg/L	40	1,1,1,2-Tetrachloroethane	ND	200	µg/L
6	Trichlorofluoromethane	ND	200	µg/L	41	Chlorobenzene	ND	200	µg/L
7	Acetone	ND	4,000	µg/L	42	Ethylbenzene	1,100	100	µg/L
8	1,1-Dichloroethene	ND	200	µg/L	43	m,p-Xylene	5,500	100	µg/L
9	Dichloromethane	ND	800	µg/L	44	Bromoform	ND	200	µg/L
10	Freon-113	ND	200	µg/L	45	Styrene	ND	200	µg/L
11	Carbon disulfide	ND	1,000	µg/L	46	o-Xylene	2,700	100	µg/L
12	trans-1,2-Dichloroethene	ND	200	µg/L	47	1,1,2,2-Tetrachloroethane	ND	200	µg/L
13	Methyl tert-butyl ether (MTBE)	3,800	100	µg/L	48	1,2,3-Trichloropropane	ND	800	µg/L
14	1,1-Dichloroethane	ND	200	µg/L	49	Isopropylbenzene	ND	200	µg/L
15	Vinyl acetate	ND	20,000	µg/L	50	Bromobenzene	ND	200	µg/L
16	2-Butanone (MEK)	ND	4,000	µg/L	51	n-Propylbenzene	ND	200	µg/L
17	cis-1,2-Dichloroethene	ND	200	µg/L	52	4-Chlorotoluene	ND	200	µg/L
18	Bromochloromethane	ND	200	µg/L	53	2-Chlorotoluene	ND	200	µg/L
19	Chloroform	ND	200	µg/L	54	1,3,5-Trimethylbenzene	310	200	µg/L
20	2,2-Dichloropropane	ND	200	µg/L	55	tert-Butylbenzene	ND	200	µg/L
21	1,2-Dichloroethane	ND	200	µg/L	56	1,2,4-Trimethylbenzene	1,100	200	µg/L
22	1,1,1-Trichloroethane	ND	200	µg/L	57	sec-Butylbenzene	ND	200	µg/L
23	1,1-Dichloropropene	ND	200	µg/L	58	1,3-Dichlorobenzene	ND	200	µg/L
24	Carbon tetrachloride	ND	200	µg/L	59	1,4-Dichlorobenzene	ND	200	µg/L
25	Benzene	9,400	100	µg/L	60	4-Isopropyltoluene	ND	200	µg/L
26	Dibromomethane	ND	200	µg/L	61	1,2-Dichlorobenzene	ND	200	µg/L
27	1,2-Dichloropropane	ND	200	µg/L	62	n-Butylbenzene	ND	200	µg/L
28	Trichloroethene	ND	200	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)	ND	1,200	µg/L
29	Bromodichloromethane	ND	200	µg/L	64	1,2,4-Trichlorobenzene	ND	800	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	1,000	µg/L	65	Naphthalene	ND	800	µg/L
31	cis-1,3-Dichloropropene	ND	200	µg/L	66	1,2,3-Trichlorobenzene	ND	800	µg/L
32	trans-1,3-Dichloropropene	ND	200	µg/L	67	Surr: 1,2-Dichloroethane-d4	109		%REC
33	1,1,2-Trichloroethane	ND	200	µg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	12,000	100	µg/L	69	Surr: 4-Bromofluorobenzene	96		%REC
35	1,3-Dichloropropane	ND	200	µg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Kandy Sandmer

Walter Acrilmon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-17A Client I.D. Number: MW-8
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

				ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	μg/L	63	1,2-Dibromo-3-chloropropane (DBCP)) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	108		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	100		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Sandmer

Walter Acrim

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-18A Client I.D. Number: GMW-39

Shiow-Whei Chou Attn: Phone: (949) 642-0245 Fax: (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

R				ıg				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	μg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	μg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	4.5	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	μg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1.3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1.2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND '	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1.2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	μg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	106		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	102		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Sandmer Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Dalter Hiridmon

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-19A Client I.D. Number: EXP-1

Shiow-Whei Chou Attn: Phone: (949) 642-0245 Fax: (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	μg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	105		%REC
33	1,1,2-Trichloroethane	ND	1.0	μg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	0.50	μg/L	69	Surr: 4-Bromofluorobenzene	100		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Saulmer Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Dalter Airihm

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-20A Client I.D. Number: MW-SF-1

Shiow-Whei Chou Attn: Phone: (949) 642-0245 Fax: (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

		Reportir	ng				Reporti	ng	
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	50	µg/L	36	2-Hexanone	ND	500	µg/L
2	Chloromethane	ND	200	µg/L	37	Dibromochloromethane	ND	50	µg/L
3	Vinyl chloride	ND	50	µg/L	38	1,2-Dibromoethane (EDB)	ND	200	µg/L
4	Chloroethane	ND	50	µg/L	39	Tetrachloroethene	ND	50	µg/L
5	Bromomethane	ND	200	µg/L	40	1,1,1,2-Tetrachloroethane	ND	50	µg/L
6	Trichlorofluoromethane	ND	50	µg/L	41	Chlorobenzene	ND	50	µg/L
7	Acetone	ND	1,000	µg/L	42	Ethylbenzene	390	25	µg/L
8	1,1-Dichloroethene	ND	50	µg/L	43	m,p-Xylene	440	25	µg/L
9	Dichloromethane	ND	200	µg/L	44	Bromoform	ND	50	µg/L
10	Freon-113	ND	50	µg/L	45	Styrene	ND	50	µg/L
11	Carbon disulfide	ND	250	µg/L	46	o-Xylene	350	25	µg/L
12	trans-1,2-Dichloroethene	ND	50	µg/L	47	1,1,2,2-Tetrachloroethane	ND	50	µg/L
13	Methyl tert-butyl ether (MTBE)	160	25	µg/L	48	1,2,3-Trichloropropane	ND	200	μg/L
14	1,1-Dichloroethane	ND	50	µg/L	49	Isopropylbenzene	ND	50	µg/L
15	Vinyl acetate	ND	5,000	µg/L	50	Bromobenzene	ND	50	µg/L
16	2-Butanone (MEK)	ND	1,000	µg/L	51	n-Propylbenzene	ND	50	µg/L
17	cis-1,2-Dichloroethene	ND	50	µg/L	52	4-Chlorotoluene	ND	50	µg/L
18	Bromochloromethane	ND	50	µg/L	53	2-Chlorotoluene	ND	50	µg/L
19	Chloroform	ND	50	µg/L	54	1,3,5-Trimethylbenzene	ND	50	µg/L
20	2,2-Dichloropropane	ND	50	µg/L	55	tert-Butylbenzene	ND	50	µg/L
21	1,2-Dichloroethane	ND	50	µg/L	56	1,2,4-Trimethylbenzene	110	50	µg/L
22	1,1,1-Trichloroethane	ND	50	µg/L	57	sec-Butylbenzene	ND	50	µg/L
23	1,1-Dichloropropene	ND	50	µg/L	58	1,3-Dichlorobenzene	ND	50	µg/L
24	Carbon tetrachloride	ND	50	µg/L	59	1,4-Dichlorobenzene	ND	50	µg/L
25	Benzene	3,400	25	µg/L	60	4-Isopropyltoluene	ND	50	µg/L
26	Dibromomethane	ND	50	µg/L	61	1,2-Dichlorobenzene	ND	50	µg/L
27	1,2-Dichloropropane	ND	50	µg/L	62	n-Butylbenzene	ND	50	µg/L
28	Trichloroethene	ND	50	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)	ND	300	µg/L
29	Bromodichloromethane	ND	50	µg/L	64	1,2,4-Trichlorobenzene	ND	200	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	250	µg/L	65	Naphthalene	ND	200	µg/L
31	cis-1,3-Dichloropropene	ND	50	µg/L	66	1,2,3-Trichlorobenzene	ND	200	µg/L
32	trans-1,3-Dichloropropene	ND	50	µg/L	67	Surr: 1,2-Dichloroethane-d4	107		%REC
33	1,1,2-Trichloroethane	ND	50	µg/L	68	Surr: Toluene-d8	98		%REC
34	Toluene	320	25	µg/L	69	Surr: 4-Bromofluorobenzene	97		%REC
35	1,3-Dichloropropane	ND	50	µg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Kandy Sandner

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Walter Alm Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

3/23/07

Report Date

Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-21A Client I.D. Number: EXP-3
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

		Reportir	ng				Reporti	ng	
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	105		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	98		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	100		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Sandmer

Walter Hiridman

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-22A Client I.D. Number: ZDS-2
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	2.0	µg/L	36	2-Hexanone	ND	20	µg/L
2	Chloromethane	ND	8.0	µg/L	37	Dibromochloromethane	ND	2.0	µg/L
3	Vinyl chloride	ND	2.0	µg/L	38	1,2-Dibromoethane (EDB)	ND	8.0	µg/L
4	Chloroethane	ND	2.0	µg/L	39	Tetrachloroethene	ND	2.0	μg/L
5	Bromomethane	ND	8.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	2.0	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	2.0	µg/L
7	Acetone	ND	40	µg/L	42	Ethylbenzene	ND	1.0	μg/L
8	1,1-Dichloroethene	ND	2.0	µg/L	43	m,p-Xylene	ND	1.0	µg/L
9	Dichloromethane	ND	8.0	µg/L	44	Bromoform	ND	2.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	2.0	μg/L
11	Carbon disulfide	ND	10	µg/L	46	o-Xylene	ND	1.0	µg/L
12	trans-1,2-Dichloroethene	ND	2.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	2.0	µg/L
13	Methyl tert-butyl ether (MTBE)	740	1.0	µg/L	48	1,2,3-Trichloropropane	ND	8.0	µg/L
14	1,1-Dichloroethane	ND	2.0	µg/L	49	Isopropylbenzene	ND	2.0	µg/L
15	Vinyl acetate	ND	200	µg/L	50	Bromobenzene	ND	2.0	µg/L
16	2-Butanone (MEK)	ND	40	µg/L	51	n-Propylbenzene	ND	2.0	µg/L
17	cis-1,2-Dichloroethene	ND	2.0	µg/L	52	4-Chlorotoluene	ND	2.0	µg/L
18	Bromochloromethane	ND	2.0	µg/L	53	2-Chlorotoluene	ND	2.0	µg/L
19	Chloroform	ND	2.0	µg/L	54	1,3,5-Trimethylbenzene	ND	2.0	µg/L
20	2,2-Dichloropropane	ND	2.0	µg/L	55	tert-Butylbenzene	ND	2.0	µg/L
21	1,2-Dichloroethane	ND	2.0	µg/L	56	1,2,4-Trimethylbenzene	ND	2.0	µg/L
22	1,1,1-Trichloroethane	ND	2.0	µg/L	57	sec-Butylbenzene	ND	2.0	µg/L
23	1,1-Dichloropropene	ND	2.0	µg/L	58	1,3-Dichlorobenzene	ND	2.0	µg/L
24	Carbon tetrachloride	ND	2.0	µg/L	59	1,4-Dichlorobenzene	ND	2.0	µg/L
25	Benzene	ND	1.0	µg/L	60	4-Isopropyltoluene	ND	2.0	µg/L
26	Dibromomethane	ND	2.0	µg/L	61	1,2-Dichlorobenzene	ND	2.0	µg/L
27	1,2-Dichloropropane	ND	2.0	µg/L	62	n-Butylbenzene	ND	2.0	µg/L
28	Trichloroethene	ND	2.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)	ND	12	µg/L
29	Bromodichloromethane	ND	2.0	µg/L	64	1,2,4-Trichlorobenzene	ND	8.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	2.0	µg/L	66	1,2,3-Trichlorobenzene	ND	8.0	µg/L
32	trans-1,3-Dichloropropene	ND	2.0	µg/L	67	Surr: 1,2-Dichloroethane-d4	109		%REC
33	1,1,2-Trichloroethane	ND	2.0	µg/L	68	Surr: Toluene-d8	96		%REC
34	Toluene	ND	1.0	µg/L	69	Surr: 4-Bromofluorobenzene	99		%REC
35	1,3-Dichloropropane	ND	2.0	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Kandy Danlmer

Walter Alm

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-23A Client I.D. Number: ZDS-3
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/13/07 Received: 03/15/07 Analyzed: 03/23/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reporti	ng				Reporti	ng
	Compound	Concentration	Limit	Limit		Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	10	µg/L	36	2-Hexanone	ND	100	µg/L
2	Chloromethane	ND	40	µg/L	37	Dibromochloromethane	ND	10	µg/L
з	Vinyl chloride	ND	10	µg/L	38	1,2-Dibromoethane (EDB)	ND	40	µg/L
4	Chloroethane	ND	10	µg/L	39	Tetrachloroethene	ND	10	µg/L
5	Bromomethane	ND	40	µg/L	40	1,1,1,2-Tetrachloroethane	ND	10	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	10	μg/L
7	Acetone	ND	200	µg/L	42	Ethylbenzene	ND	5.0	µg/L
8	1,1-Dichloroethene	ND	10	µg/L	43	m,p-Xylene	ND	5.0	µg/L
9	Dichloromethane	ND	40	µg/L	44	Bromoform	ND	10	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	10	µg/L
11	Carbon disulfide	ND *	50	µg/L	46	o-Xylene	ND	5.0	µg/L
12	trans-1,2-Dichloroethene	ND	10	µg/L	47	1,1,2,2-Tetrachloroethane	ND	10	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/L	48	1,2,3-Trichloropropane	ND	40	µg/L
14	1,1-Dichloroethane	ND	10	µg/L	49	Isopropylbenzene	ND	10	µg/L
15	Vinyl acetate	ND *	1,000	µg/L	50	Bromobenzene	ND	10	μg/L
16	2-Butanone (MEK)	ND	200	µg/L	51	n-Propylbenzene	ND	10	µg/L
17	cis-1,2-Dichloroethene	ND	10	µg/L	52	4-Chlorotoluene	ND	10	µg/L
18	Bromochloromethane	ND	10	µg/L	53	2-Chlorotoluene	ND	10	µg/L
19	Chloroform	ND	10	µg/L	54	1,3,5-Trimethylbenzene	ND	10	µg/L
20	2,2-Dichloropropane	ND	10	µg/L	55	tert-Butylbenzene	ND	10	µg/L
21	1,2-Dichloroethane	ND	10	µg/L	56	1,2,4-Trimethylbenzene	ND	10	µg/L
22	1,1,1-Trichloroethane	ND	10	µg/L	57	sec-Butylbenzene	ND	10	µg/L
23	1,1-Dichloropropene	ND	10	µg/L	58	1,3-Dichlorobenzene	ND	10	µg/L
24	Carbon tetrachloride	ND	10	µg/L	59	1,4-Dichlorobenzene	ND	10	µg/L
25	Benzene	ND	5.0	µg/L	60	4-Isopropyltoluene	ND	10	µg/L
26	Dibromomethane	ND	10	µg/L	61	1,2-Dichlorobenzene	ND	10	µg/L
27	1,2-Dichloropropane	ND	10	µg/L	62	n-Butylbenzene	ND	10	µg/L
28	Trichloroethene	ND	10	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)) ND	60	µg/L
29	Bromodichloromethane	ND	10	µg/L	64	1,2,4-Trichlorobenzene	ND	40	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	50	µg/L	65	Naphthalene	ND	40	µg/L
31	cis-1,3-Dichloropropene	ND	10	µg/L	66	1,2,3-Trichlorobenzene	ND	40	µg/L
32	trans-1,3-Dichloropropene	ND	10	µg/L	67	Surr: 1,2-Dichloroethane-d4	111		%REC
33	1,1,2-Trichloroethane	ND	10	µg/L	68	Surr: Toluene-d8	97		%REC
34	Toluene	ND	5.0	µg/L	69	Surr: 4-Bromofluorobenzene	97		%REC
35	1,3-Dichloropropane	ND	10	µg/L					

*Analyte analyzed separately on 3/21/07.

Reporting Limits were increased due to sample foaming.

ND = Not Detected

Roger Scholl

Walter #

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Geomatrix Consultants 510 Superior Avenue, Suite 200 Newport Beach, CA 926633627 Job#: KMEP-Norwalk

Alpha Analytical Number: GMT07031527-24A Client I.D. Number: TB-1
 Attn:
 Shiow-Whei Chou

 Phone:
 (949) 642-0245

 Fax:
 (949) 642-4474

Sampled: 03/12/07 Received: 03/15/07 Analyzed: 03/21/07

Volatile Organics by GC/MS EPA Method 624/SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration		
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	2-Hexanone	ND	5.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Dibromochloromethane	ND	1.0	µg/L
3	Vinyl chloride	ND	0.50	µg/L	38	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Tetrachloroethene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	41	Chlorobenzene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	42	Ethylbenzene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	m,p-Xylene	ND	0.50	µg/L
9	Dichloromethane	ND	5.0	µg/L	44	Bromoform	ND	1.0	µg/L
10	Freon-113	ND	10	µg/L	45	Styrene	ND	1.0	µg/L
11	Carbon disulfide	ND	2.5	µg/L	46	o-Xylene	ND	0.50	µg/L
12	trans-1,2-Dichloroethene	ND	1.0	µg/L	47	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
13	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	48	1,2,3-Trichloropropane	ND	2.0	µg/L
14	1,1-Dichloroethane	ND	1.0	µg/L	49	Isopropylbenzene	ND	1.0	µg/L
15	Vinyl acetate	ND	50	µg/L	50	Bromobenzene	ND	1.0	µg/L
16	2-Butanone (MEK)	ND	10	µg/L	51	n-Propylbenzene	ND	1.0	µg/L
17	cis-1,2-Dichloroethene	ND	1.0	µg/L	52	4-Chlorotoluene	ND	1.0	µg/L
18	Bromochloromethane	ND	1.0	µg/L	53	2-Chlorotoluene	ND	1.0	µg/L
19	Chloroform	ND	1.0	µg/L	54	1,3,5-Trimethylbenzene	ND	1.0	µg/L
20	2,2-Dichloropropane	ND	1.0	µg/L	55	tert-Butylbenzene	ND	1.0	µg/L
21	1,2-Dichloroethane	ND	0.50	µg/L	56	1,2,4-Trimethylbenzene	ND	1.0	µg/L
22	1,1,1-Trichloroethane	ND	1.0	µg/L	57	sec-Butylbenzene	ND	1.0	µg/L
23	1,1-Dichloropropene	ND	1.0	µg/L	58	1,3-Dichlorobenzene	ND	1.0	µg/L
24	Carbon tetrachloride	ND	1.0	µg/L	59	1,4-Dichlorobenzene	ND	1.0	µg/L
25	Benzene	ND	0.50	µg/L	60	4-Isopropyltoluene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dichlorobenzene	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	n-Butylbenzene	ND	1.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	1,2-Dibromo-3-chloropropane (DBCP)) ND	5.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	1,2,4-Trichlorobenzene	ND	2.0	µg/L
30	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	65	Naphthalene	ND	10	µg/L
31	cis-1,3-Dichloropropene	ND	0.50	µg/L	66	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	trans-1,3-Dichloropropene	ND	0.50	µg/L	67	Surr: 1,2-Dichloroethane-d4	107		%REC
33	1,1,2-Trichloroethane	ND	1.0	µg/L	68	Surr: Toluene-d8	99		%REC
34	Toluene	ND	0.50	µg/L	69	Surr: 4-Bromofluorobenzene	96		%REC
35	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

Roger Scholl

Kandy Sandmer

Walter Hiridmon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

3/23/07

Report Date

Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: GMT07031527

Project: KMEP-Norwalk

Alpha's Sample ID	Client's Sample ID	Matrix	pH
07031527-01A	EXP-5	Aqueous	2
07031527-02A	GMW-0-14	Aqueous	2
07031527-03A	GMW-0-2	Aqueous	2
07031527-04A	GMW-0-1	Aqueous	2
07031527-05A	ZDS-1	Aqueous	2
07031527-06A	GMW-0-3	Aqueous	5
07031527-07A	PZ-5	Aqueous	2
07031527-08A	PZ-10	Aqueous	2
07031527-09A	WCW-3	Aqueous	2
07031527-10A	WCW-13	Aqueous	2
07031527-11A	WCW-7	Aqueous	2
07031527-12A	GMW-38	Aqueous	2
07031527-13A	GMW-SF-7	Aqueous	2
07031527-14A	EXP-2	Aqueous	2
07031527-15A	GMW-1	Aqueous	2
07031527-16A	GMW-36	Aqueous	6
07031527-17A	MW-8	Aqueous	2
07031527-18A	GMW-39	Aqueous	2
07031527-19A	EXP-1	Aqueous	2
07031527-20A	MW-SF-1	Aqueous	2
07031527-21A	EXP-3	Aqueous	2
07031527-22A	ZDS-2	Aqueous	2
07031527-23A	ZDS-3	Aqueous	2
07031527-24A	TB-1	Aqueous	2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Mar-07		OC S	umm		Work Order: 07031527				
Method Blank		Type N	IBLK	Test Code: EPA Method 624	/SW8260B	8260B			
File ID: C:\HPCHEM\MS07\E	DATA\070319\07031910.D			Batch ID: MS07W0319A	Analysis D	ate: 03/19/2007 11:02			
Sample ID: MBLK MS07	W0319A Units : µg/L			: MSD_07_070319A	Prep Date:				
Analyte	Result	PQL	Spk	Val SpkRefVal %REC LCL(MI	E) UCL(ME) RPD	RefVal %RPD(Limit) Qual			
Dichlorodifluoromethane	ND	1							
Chloromethane	ND	2							
Vinyl chloride	ND	0.5							
Chloroethane Bromomethane	ND	1							
Trichlorofluoromethane	ND ND	2 10							
Acetone	ND	10							
1,1-Dichloroethene	ND	1							
Dichloromethane	ND	5							
Freon-113	ND	10							
Carbon disulfide trans-1,2-Dichloroethene	ND ND	2.5 1							
Methyl tert-butyl ether (MTBE		0.5							
1,1-Dichloroethane	ND	1							
Vinyl acetate	ND	50	1						
2-Butanone (MEK)	ND	10							
cis-1,2-Dichloroethene Bromochloromethane	ND ND	1							
Chloroform	ND	1							
2,2-Dichloropropane	ND	1							
1,2-Dichloroethane	ND	0.5							
1,1,1-Trichloroethane	ND	1							
1,1-Dichloropropene	ND	1							
Carbon tetrachloride Benzene	ND	1							
Dibromomethane	ND ND	0.5 1	•						
1,2-Dichloropropane	ND	1							
Trichloroethene	ND	1							
Bromodichloromethane	ND	1							
4-Methyl-2-pentanone (MIBK)		10							
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	0.5							
1,1,2-Trichloroethane	ND	0.5 1							
Toluene	ND	0.5							
1,3-Dichloropropane	ND	1							
2-Hexanone	ND	5	i						
Dibromochloromethane	ND	1							
1,2-Dibromoethane (EDB) Tetrachloroethene	ND ND	2							
1,1,1,2-Tetrachloroethane	ND	1							
Chlorobenzene	ND	1							
Ethylbenzene	ND	0.5	5						
m,p-Xylene	ND	0.5	i						
Bromoform	ND	1							
Styrene o-Xylene	ND ND	1 0.5							
1,1,2,2-Tetrachloroethane	ND	0.5							
1,2,3-Trichloropropane	ND	2							
Isopropylbenzene	ND	1							
Bromobenzene	ND	1							
n-Propylbenzene	ND	1							
4-Chlorotoluene 2-Chlorotoluene	ND ND	1							
1,3,5-Trimethylbenzene	ND	1							
tert-Butylbenzene	ND	1							
1,2,4-Trimethylbenzene	ND	1							
sec-Butylbenzene	ND	1							
1,3-Dichlorobenzene	ND	1							
1,4-Dichlorobenzene 4-Isopropyltoluene	ND	1							
1,2-Dichlorobenzene	ND ND	1							
n-Butylbenzene	ND	1							
1,2-Dibromo-3-chloropropane		5				J			
1,2,4-Trichlorobenzene	ND	2	2						
Naphthalene	ND	10							

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Mar-07	(C Su	mmar	y Report			Work Order: 07031527		
1,2,3-Trichlorobenzene	ND	2							
Surr: 1,2-Dichloroethane-d4	11.1		10		111	75	128		
Surr: Toluene-d8	9.84		10		98	80	120		
Surr: 4-Bromofluorobenzene	9.45		10		95	80	120		
Laboratory Control Spike		Type LC	S Te	est Code: EP	A Met	hod 624/S	W8260B		
File ID: C:\HPCHEM\MS07\DATA\070319\0			tch ID: MS0	7W031	9A	Analy	sis Date: 03	8/19/2007 10:39	
Sample ID: LCS MS07W0319A	Units : µg/L	F		SD_07_0703			Prep I		/19/2007
Analyte	Result	PQL				LCL(ME)			%RPD(Limit) Qua
1,1-Dichloroethene	9.67	. 1	10		97	80	120		
Benzene	10.3	0.5	10		103	70	130		
Trichloroethene	9.95	1	10		100	70	130		
Toluene	10.5	0.5	10		105	80	120		
Chlorobenzene	9.75	1	10		98	70	130		
Ethylbenzene	10.4	0.5	10		104	80	120		
m,p-Xylene	10.8	0.5	10		108	70	130		
o-Xylene	11	0.5	10		110	70	130		
Surr: 1,2-Dichloroethane-d4	10.8		10		108	75	128		
Surr: Toluene-d8	10.2		10		102	80	120		
Surr: 4-Bromofluorobenzene	9.74		10		97	80	120		
Sample Matrix Spike		Type MS	S Te	est Code: EP	A Met	hod 624/S	W8260B		
File ID: C:\HPCHEM\MS07\DATA\070319\0	7031912.D		Ba	atch ID: MSO	sis Date: 03	3/19/2007 11:48			
Sample ID: 07031527-01AMS	Units : µg/L	F	Run ID: MS	SD_07_0703	19A		Prep I	Date: 03	/19/2007
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefVal	%RPD(Limit) Qua
1,1-Dichloroethene	42	2.5	50	0	84	66	132		
Benzene	45.3	1.3	50	0	91	70	130		
Trichloroethene	42.6	2.5	50	0	85	69	130		
Toluene	45.1	1.3	50	0	90	67	130		
Chlorobenzene	42.2	2.5	50	0	84	70	130		
Ethylbenzene	44.5	1.3	50	0	89	70	130		
m,p-Xylene	46	1.3	50	0	92	69	130		
o-Xylene	47.2	1.3	50	0	94	70	130		
Surr: 1,2-Dichloroethane-d4	52		50		104	75	128		
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	50		50		100	80 80	120 120		
	49.9		50		99.9				
Sample Matrix Spike Duplicate File ID: C:\HPCHEM\MS07\DATA\070319\0	7001010 D	Type MS		est Code: EP				oio Doto: 0	0/10/2007 12.11
Sample ID: 07031527-01AMSD		-		atch ID: MS07		YA	Prep I		3/19/2007 12:11 /19/2007
Analyte	Units : µg/L Result	PQL		SD_07_0703			•		%RPD(Limit) Qua
1,1-Dichloroethene									
Benzene	44 47.4	2.5 1.3	50 50	0	88 95	66 70	132 130	41.96 45.28	4.8(20) 4.5(20)
Trichloroethene	47.4 44.8			0 0	95 90	70 69	130	45.28 42.58	4.5(20) 5.1(20)
Toluene	44.8 48	2.5 1.3	50 50	0	90 96	69 67	130	42.56 45.14	6.1(20)
Chlorobenzene	48	2.5	50 50	0	90 90	70	130	43.14	6.7(20)
Ethylbenzene	45.2 47.3	2.5 1.3	50 50	0	90 95	70	130	42.24	6.0(20)
m,p-Xylene	49.7	1.3	50 50	0	95 99	69	130	44.52	7.8(20)
o-Xylene	49.7 50.3	1.3	50 50	0	99 101	70	130	47.15	6.4(20)
	51.5	1.3	50 50	0	103	75	128	77.10	0. ((20)
Surr: 1.2-Dichloroethane-d4									
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8									
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	50.5 50		50 50 50		103 101 100	80 80	120 120 120		

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Mar-07	(OC Summary Report								
Method Blank		Type I	ABLK	Test Code: EPA Method 624/	SW8260B					
File ID: C:\HPCHEM\MS07\DATA\070	320\07032042.D			Batch ID: MS07W0320A	Analysis Date:	03/21/2007 00:04				
Sample ID: MBLK MS07W0320A	Units : µg/L		Run ID	: MSD_07_070320A	Prep Date:	03/21/2007				
Analyte	Result	PQL	Spk	Val SpkRefVal %REC LCL(ME) UCL(ME) RPDRef	Val %RPD(Limit) Qual				
Dichlorodifluoromethane	ND		1							
Chloromethane	ND		2							
Vinyl chloride	ND	0.	5							
Chloroethane	ND		1							
Bromomethane Trichlorofluoromethane	ND ND	1	2							
Acetone	ND	1								
1,1-Dichloroethene	ND		1							
Dichloromethane	ND		5							
Freon-113	ND	1								
Carbon disulfide	ND	2.								
trans-1,2-Dichloroethene Methyl tert-butyl ether (MTBE)	ND ND	0.								
1,1-Dichloroethane	ND	0.								
Vinyl acetate	ND	5								
2-Butanone (MEK)	ND	1								
cis-1,2-Dichloroethene	ND		1							
Bromochloromethane	ND		1							
Chloroform 2,2-Dichloropropane	ND		1 1							
1,2-Dichloroethane	ND ND	0.	•							
1,1,1-Trichloroethane	ND		1							
1,1-Dichloropropene	ND		1							
Carbon tetrachloride	ND		1							
Benzene	ND	0.								
Dibromomethane 1,2-Dichloropropane	ND ND		1 1							
Trichloroethene	ND		1							
Bromodichloromethane	ND		1							
4-Methyl-2-pentanone (MIBK)	ND	1								
cis-1,3-Dichloropropene	ND	0.								
trans-1,3-Dichloropropene	ND	0.								
1,1,2-Trichloroethane Toluene	ND ND	0.	1							
1,3-Dichloropropane	ND		1							
2-Hexanone	ND		5							
Dibromochloromethane	ND		1							
1,2-Dibromoethane (EDB)	ND		2							
Tetrachloroethene	ND		1							
1,1,1,2-Tetrachloroethane	ND		1							
Chlorobenzene Ethylbenzene	ND ND	0.	1 5							
m,p-Xylene	ND	0.								
Bromoform	ND		1							
Styrene	ND		1							
o-Xylene	ND	0.								
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ND ND		1							
Isopropylbenzene	ND		2 1							
Bromobenzene	ND		1							
n-Propylbenzene	ND		1							
4-Chlorotoluene	ND		1							
2-Chlorotoluene	ND		1							
1,3,5-Trimethylbenzene	ND		1 1							
tert-Butylbenzene 1,2,4-Trimethylbenzene	ND ND		י 1							
sec-Butylbenzene	ND		1							
1,3-Dichlorobenzene	ND		1							
1,4-Dichlorobenzene	ND		1			•				
4-Isopropyltoluene	ND		1							
1,2-Dichlorobenzene	ND		1							
n-Butylbenzene 1,2-Dibromo-3-chloropropane (DBCP)	ND ND		1 5							
1,2,4-Trichlorobenzene	ND		2							
Naphthalene	ND	1								

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Mar-07	(DC Su	mmary	y Report					Work Order: 07031527
1,2,3-Trichlorobenzene	ND	2							
Surr: 1,2-Dichloroethane-d4	10.6		10		106	75	128		
Surr: Toluene-d8	9.77		10		98	80	120		
Surr: 4-Bromofluorobenzene	10		10		100	80	120		
Laboratory Control Spike		Type LC	S Te	est Code: EPA	Meth	nod 624/S	SW8260B		
File ID: C:\HPCHEM\MS07\DATA\070320\0		Ba	atch ID: MS07	W032	20A	Analys	sis Date: 0	3/20/2007 22:36	
Sample ID: LCS MS07W0320A	Units : µg/L	F	Run ID: MS	SD 07 07032	0A		Prep I	Date: 0	3/20/2007
Analyte	Result	PQL				LCL(ME)	UCL(ME)	RPDRefVa	l %RPD(Limit) Qua
1,1-Dichloroethene	9.18	1	10		92	80	120		
Benzene	9.86	0.5	10		99	70	130		
Trichloroethene	9.92	1	10		99	70	130		
Toluene	9.87	0.5	10		99	80	120		
Chlorobenzene	9.09	1	10		91	70	130		
Ethylbenzene	9.5	0.5	10		95	80	120		
m,p-Xylene	10	0.5	10		100	70	130		
o-Xylene	10.1	0.5	10	•	101	70	130		
Surr: 1,2-Dichloroethane-d4	10.4		10		104	75	128		
Surr: Toluene-d8	10.1		10		101	80	120		
Surr: 4-Bromofluorobenzene	9.97		10		99.7	80	120		
Sample Matrix Spike		Type MS		est Code: EPA					
File ID: C:\HPCHEM\MS07\DATA\070320\0	7032044.D		Ba	atch ID: MS07	sis Date: 0	3/21/2007 00:50			
Sample ID: 07031527-10AMS	Units : µg/L	F		SD_07_07032			Prep I		3/21/2007
Analyte	Result	PQL	SpkVal	SpkRefVal %	REC	LCL(ME)	UCL(ME)	RPDRefVa	I %RPD(Limit) Qua
1,1-Dichloroethene	47.3	2.5	50	0	95	66	132		
Benzene	49	1.3	50	0	98	70	130		
Trichloroethene	47.1	2.5	50	•	94	69	130		
Toluene	48	1.3	50	-	96	67	130		
Chlorobenzene	45.1	2.5	50	0	90	70	130		
Ethylbenzene	47.1	1.3	50	-	94	70	130		
m,p-Xylene o-Xylene	49.2	1.3	50	0	98	69 70	130 130		
Surr: 1,2-Dichloroethane-d4	50.1	1.3	50	-	100 107	70 75	128		
Surr: Toluene-d8	53.7 49.8		50 50		99.6	80	120		
Surr: 4-Bromofluorobenzene	49.8		50		99.0 99	80	120		
	40.0	Type MS		est Code: EPA					
Sample Matrix Spike Duplicate File ID: C:\HPCHEM\MS07\DATA\070320\0	7032045 D	Type Ma		atch ID: MS07				sis Date: (3/21/2007 01:12
Sample ID: 07031527-10AMSD	Units : µg/L	F		SD_07_07032			Prep I		3/21/2007
Analyte	Result	PQL .				LCL(ME)	•		I %RPD(Limit) Qua
1.1-Dichloroethene	46.8	2.5	50		94	66	132	47.31	1.0(20)
Benzene	47.8	1.3	50	-	96	70	130	49.02	2.5(20)
Trichloroethene	46.3	2.5	50	õ	93	69	130	47.06	1.7(20)
Toluene	47.2	1.3	50	-	94	67	130	48.04	1.7(20)
	44.1	2.5	50	-	88	70	130	45.11	2.4(20)
Chlorobenzene		1.3	50	0	93	70	130	47.08	1.2(20)
	46.5	1.0						49.24	
Ethylbenzene	46.5 48.2	1.3	50	0	96	69	130	49.24	2.2(20)
Ethylbenzene m,p-Xylene o-Xylene					96 97	69 70	130	49.24 50.08	2.9(20)
Ethylbenzene m,p-Xylene o-Xylene	48.2	1.3	50	0					
Ethylbenzene m,p-Xylene	48.2 48.7	1.3	50 50	0	97	70	130		

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Mar-07		Work Order: 07031527										
Method Blan File ID: Sample ID:	nk MBLK-17066	Units : mg/L	Type MBLK Test Code: EPA Method SW8015 Batch ID: 17066 Analysis Date: Units : mg/L Run ID: FID_3_070317A Prep Date:									
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit) Qual			
TPH-E (Fuel P Surr: Nonane	roduct)	ND 92.7	0.1	100		93	46	148				
File ID:	Control Spike		Type L	Ba	est Code: E atch ID: 170	66	hod SW80	Analysis Date:	03/18/2007 08:52			
Sample ID: Analyte	LCS-17066	Units : mg/L Result	PQL		D_3_07031 SpkRefVal		LCL(ME)	Prep Date: UCL(ME) RPDRef	03/17/2007 Val %RPD(Limit) Qual			
TPH-E (DRO) Surr: Nonane		2.45 98.9	0.5	5 2.5 100		98 99	65 46	130 148				
Sample Mat	rix Spike		Туре М		est Code: E		hod SW80		03/18/2007 11:33			
Sample ID: Analyte	07031560-01AMS	Units : mg/L Result	PQL		D_3_07031 SpkRefVal		LCL(ME)	Prep Date:	03/17/2007 Val %RPD(Limit) Qual			
TPH-E (DRO) Surr: Nonane		2.63 96.3	0.5		0		37 46	164 148				
-	rix Spike Duplicate		Type N	ISD Te	est Code: E	PA Met	hod SW80					
File ID: Sample ID: Analyte	07031560-01AMSD	Units : mg/L Result	PQL	Run ID: FI	atch ID: 170 D_ 3_07031 SpkRefVal	7A	LCL(ME)	Prep Date:	03/18/2007 12:05 03/17/2007 Val %RPD(Limit) Qual			
TPH-E (DRO) Surr: Nonane	×	2.71 103	0.5		0		37 46	164 2.63 148				

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 		Work Order: 07031527							
Method Blar File ID:	nk		Туре М		est Code: E atch ID: 170		hod SW80		03/17/2007 15:45
Sample ID: Analyte	MBLK-17065	Units : mg/L Result	PQL		D_3_07031 SpkRefVal		LCL(ME)	Prep Date: UCL(ME) RPDRef	03/17/2007 Val %RPD(Limit) Qual
TPH-E (Fuel Pi Surr: Nonane	roduct)	ND 92.2	0.1	100		92	46	148	· · ·
Laboratory (File ID:	Control Spike		Type L		est Code: E atch ID: 170		hod SW80		03/17/2007 16:17
Sample ID: Analyte	LCS-17065	Units : mg/L Result	PQL		D_3_07031 SpkRefVal		LCL(ME)	Prep Date: UCL(ME) RPDRef	03/17/2007 Val %RPD(Limit) Qual
TPH-E (DRO) Surr: Nonane		2.34 91.1	0.5	5 2.5 100		93 91	65 46	130 148	
Sample Mat	rix Spike		Τуре Ν		est Code: E atch ID: 170		thod SW80		03/17/2007 17:21
Sample ID: Analyte	07031527-01AMS	Units : mg/L Result	PQL		D_3_07031 SpkRefVal		CLCL(ME)	Prep Date: UCL(ME) RPDRef	03/17/2007 Val %RPD(Limit) Qual
TPH-E (DRO) Surr: Nonane		2.37 94.2	0.5	5 2.5 100	0	95 94	37 46	164 148	
Sample Mat	rix Spike Duplicate		Type N		est Code: E		thod SW80		03/17/2007 17:53
Sample ID: Analyte	07031527-01AMSD	Units : mg/L Result	PQL	Run ID: FI	D_3_07031	7B	CLCL(ME)	Prep Date:	03/17/2007 Val %RPD(Limit) Qual
TPH-E (DRO) Surr: Nonane		2.47 96.3	0.5		0		37 46	164 2.36 148	

Comments:

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Mar-07		C)C Sı	ummary	Report					ork Order: 07031527
	CHEM\MS07\DATA\070319	\07031910.D	Туре М	Ba	est Code: EP/ atch ID: MS07	W031		Analysis Da	ate: 03/19/200 03/19/2007	
Sample ID: Analyte	MBLK MS07W0319B	Units : mg/L Result	PQL		SpkBefVal %		LCL(ME)	Prep Date: UCL(ME) RPD		
TPH-P (GRO) Surr: 1,2-Dichle Surr: Toluene-e		ND 0.0111 0.00984	0.05			111 98	75 80	128 120		
Surr: 4-Bromof		0.00945		0.01		95	80	120		
Laboratory	Control Spike		Type L	CS Te	est Code: EP/	A Meti	hod SW80			
File ID: C:\HP	CHEM\MS07\DATA\070319	\07031906.D		Ba	tch ID: MS07	W031	9B	Analysis Da	ate: 03/19/200	7 09:31
Sample ID:	GLCS MS07W0319B	Units : mg/L			SD_07_07031			Prep Date:	03/19/2007	
Analyte		Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPD	RefVal %RPD(Limit) Qual
TPH-P (GRO) Surr: 1,2-Dichle Surr: Toluene-o Surr: 4-Bromof	d8	0.388 0.0111 0.00942 0.00967	0.05	0.4 0.01 0.01 0.01		97 111 94 97	70 75 80 80	130 128 120 120		
Sample Mat	rix Snike		Type M	S Te	est Code: EP	A Met	hod SW80	15	-	
-	CHEM\MS07\DATA\070319		,		tch ID: MS07	W031	9B	Analysis Da	ate: 03/19/200	7 12:34
Sample ID:	07031527-01AGS	Units : mg/L			SD_07_07031			Prep Date:		
Analyte		Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPD	RefVal %RPD(Limit) Qual
TPH-P (GRO) Surr: 1,2-Dichl Surr: Toluene- Surr: 4-Bromot	d8	1.75 0.0525 0.0477 0.0492	0.25	2 0.05 0.05 0.05	0	88 105 95 98	60 75 80 80	131 128 120 120		
Sample Mat	rix Spike Duplicate		Туре М	ISD Te	est Code: EP	A Met	hod SW80)15		
File ID: C:\HP	CHEM\MS07\DATA\070319	\07031915.D		Ba	atch ID: MS07	7W031	19B	-	ate: 03/19/200	7 12:57
Sample ID:	07031527-01AGSD	Units : mg/L			SD_07_07031			Prep Date:		
Analyte	·	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPD	RefVal %RPD	Limit) Qual
TPH-P (GRO) Surr: 1,2-Dichl Surr: Toluene- Surr: 4-Bromot	d8	1.72 0.0531 0.0483 0.0488	0.25	2 0.05 0.05 0.05	0	86 106 97 98	60 75 80 80	131 128 120 120	1.75 1.5	(20)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Mar-07	()C Sı	immarv	Report				Work Order: 07031527
Method Blank		Туре М	BLK Te	st Code: EPA	Method	SW80 [.]	15	
File ID: C:\HPCHEM\MS07\DATA\070320\07	032042.D		Ва	tch ID: MS07W	/0320B		Analysis Date	03/21/2007 00:04
Sample ID: MBLK MS07W0320B	Units : mg/L		Run ID: MS	SD 07 070320	Δ		Prep Date:	03/21/2007
Analyte	Result	PQL				L(ME)	UCL(ME) RPDRe	fVal %RPD(Limit) Qual
TPH-P (GRO)	ND	0.05						
Surr: 1,2-Dichloroethane-d4	0.0106	0.00	0.01	10	06	75	128	
Surr: Toluene-d8	0.00977		0.01			80	120	
Surr: 4-Bromofluorobenzene	0.01		0.01	1	00	80	120	
Laboratory Control Spike		Type L	CS Te	est Code: EPA	Method	SW80	15	
File ID: C:\HPCHEM\MS07\DATA\070320\07	032036.D		Ba	tch ID: MS07W	/0320B		Analysis Date	: 03/20/2007 21:52
Sample ID: GLCS MS07W0320B	Units : mg/L		Run ID: MS	SD_07_070320	Α		Prep Date:	03/20/2007
Analyte	Result	PQL	SpkVal	SpkRefVal %F	REC LCI	L(ME)	UCL(ME) RPDRe	fVal %RPD(Limit) Qual
TPH-P (GRO)	0.367	0.05	0.4	g	92	70	130	
Surr: 1,2-Dichloroethane-d4	0.011		0.01	1	10	75	128	
Surr: Toluene-d8	0.00944		0.01	ç	94	80	120	
Surr: 4-Bromofluorobenzene	0.00981		0.01	g	98	80	120	
Sample Matrix Spike Type MS Test Code: EPA Method SW8015								
File ID: C:\HPCHEM\MS07\DATA\070320\07	032046.D		Ba	tch ID: MS07W	/0320B		Analysis Date	: 03/21/2007 01:34
Sample ID: 07031527-10AGS	Units : mg/L		Run ID: MS	SD_07_070320	Α		Prep Date:	03/21/2007
Analyte	Result	PQL	SpkVal	SpkRefVal %F	REC LCI	L(ME)	UCL(ME) RPDRe	fVal %RPD(Limit) Qual
TPH-P (GRO)	1.73	0.25	2	0 8	37	60	131	
Surr: 1,2-Dichloroethane-d4	0.0523		0.05	1		75	128	
Surr: Toluene-d8	0.0473		0.05	-		80	120	·
Surr: 4-Bromofluorobenzene	0.0501		0.05	1	00	80	120	· · · · · · · · · · · · · · · · · · ·
Sample Matrix Spike Duplicate		Туре М	SD Te	est Code: EPA	Method	SW80	15	
File ID: C:\HPCHEM\MS07\DATA\070320\07	032047.D		Ba	tch ID: MS07W	/0320B		Analysis Date	: 03/21/2007 01:56
Sample ID: 07031527-10AGSD	Units : mg/L		Run ID: MS	SD_07_070320	Α		Prep Date:	03/21/2007
Analyte	Result	PQL	SpkVal	SpkRefVal %F	REC LC	L(ME)	UCL(ME) RPDRe	fVal %RPD(Limit) Qual
TPH-P (GRO)	1.65	0.25	2	3 0	33	60	131 1.7	3 4.5(20)
Surr: 1,2-Dichloroethane-d4	0.0511		0.05	1	02	75	128	
Surr: Toluene-d8	0.0479		0.05	ę	96	80	120	
Surr: 4-Bromofluorobenzene	0.05		0.05		00	80	120	

Comments:

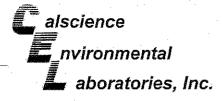
Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Billing Information :	CHAI	CHAIN-OF-CUSTODY RECORD	CA Page: 1 of 3
-	255 GI	Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406	WorkOrder: GMT07031527
Client: Geomatrix Consultants 510 Superior Avenue, Suite 200	<u>Shiow-Whei (</u> TEL : (949) 642-0245 FAX : (949) 642-4474	<u>Shiow-Whei Chou</u> 49) 642-0245 49) 642-4474	EDD Required : Yes
Newport Beach, CA 92663-3627	EMail swchow@ge	swchow@geomatrix.com	Sampled by : Angie Wagner
	Job : PO :	KMEP-Norwalk Client's COC #: 10064, 10063	<u>Cooler Temp</u> Samples Received Date Printed 4 °C 15-Mar-07 15-Mar-07
QC Level : SC3 = Final Rpt, I	Final Rpt, MBLK, LCS, MS/MSD With Surrogates and Chromatograms	es and Chromatograms	
		Requested Tests	ed Tests
Alpha Client Sample ID Sample ID	Collection No. of Bottles	TAT PWS # TPH/E_W TPH/P_W VOC_W	Sample Remarks
1527-01A	AQ 03/12/07 8 0	TPHE(0.10) TPHE(0.10) TP	
GMT07031527-02A GMW-0-14	AQ 03/12/07 8 0 16:50	7 TPHE(0.10) TPHE(0.10) +Vinyl +Vinyl +Vinyl accente accente accente	
GMT07031527-03A GMW-0-2	AQ 03/12/07 8 0 17:20	0) TPHE(0.10) TF +Vinyl acetate	
GMT07031527-04A GMW-0-1	AQ 03/12/07 8 0 17:35	0) TPHE(0.10) TP +Vinyl acetate	
GMT07031527-05A ZDS-1	AQ 03/12/07 8 0 00:00	0) TPHE(0.10) TF +Vinyl acetate	
GMT07031527-06A GMW-0-3	AQ 03/13/07 8 0 06:30	0) 11	
GMT07031527-07A PZ-5	AQ 03/13/07 8 0 06:55 0	7 TPHE(0.10) +Vinyl acctate acctate TPHE(0.10) TPHE(0.10) TPHE(0.10)	
GMT07031527-08A PZ-10	AQ 03/13/07 8 0 09:35 0	0) TPHE(0.10) TF +Vinyl acetate	
Comments: <u>Security seals in</u>	ntact. Frozen ice. Fax results to Geomatris Signature	Security seals intact. Frozen ice. Fax results to Geomatrix (Attn:Shiow-Whei Chow) in hard copy, EDD and PDF format. : Signature Print Name	Company Date/Time
Logged in by:	K- Alundu	(Munau	Alpha Analytical, Inc. 3/15/67 1SD S

Billing Information :

Billing Information :				Ω	HAIN	- 0	F-CU	JSTO	DY I	CHAIN-OF-CUSTODY RECO	ORD	C.A	Page:	9: 2 of 3
•					255 Gl	Alj endale A TEL: (7)	Alpha Ana andale Avenue, Suite: TEL: (775) 355-1044	Alpha Analytical, Inc ale Avenue, Suite 21 Sparks, Nevada 8 L: (775) 355-1044 FAX: (775) 355-04	lytical, Inc. Sparks, Nevada 894 FAX: (775) 355-0406	Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406		WorkOrder : GMT07031527	GMT070315	527 26-Mar-07
Client: Geomatrix Consultants 510 Superior Avenue, Suite 200	nue, Suite 200		Π →	TEL: (<u>Shiow-Whei Chou</u> (949) 642-0245 (949) 642-4474	<u>Vhei Ch</u> 0245 4474	<u>non</u>					EDD Required : Yes	8	
Newport Beach. CA 92663-3627	CA 92663-3627		m		swchow@geomatrix.com	omatrix.	com					Sampled by : Angie Wagner	ngie Wagner	
Report Attention : CC Report :	Shiow-Whei Chou	hou		Job :		KMEP-Norwalk	*	Client	Client's COC # :	10064, 10063	0063	<u>Cooler Temp</u> 4 ℃	<u>Samples Received</u> 15-Mar-07	Date Printed 15-Mar-07
QC Level: SC3	= Final Rpt,	MBLK,	Final Rpt, MBLK, LCS, MS/MSD With Surrogates and Chromatograms	SD With	Surrogate	es and	Chromato	grams						
											Requested Tests	Tests		
Alpha C Sample ID S	Client Sample ID	C Matrix	Collection x Date	No. of ORG	No. of Bottles ORG SUB	TAT	PWS #	TPH/E_W	TPH/P_W	VOC_W			Sam	Sample Remarks
GMT07031527-09A	WCW-3	AQ	03/13/07 11:27	œ	0	7		TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate				
GMT07031527-10A	WCW-13	Ą	03/13/07 11:45	œ	0	7		9	TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate				
GMT07031527-11A	WCW-7	ÂQ	03/13/07 12:00	8	0	7		TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate				
GMT07031527-12A	GMW-38	ΑQ	03/13/07 13:15	œ	0	7		TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate				
GMT07031527-13A	GMW-SF-7	ÂQ	03/13/07 13:50	œ	0	7		9	TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate				
GMT07031527-14A	EXP-2	ÂQ	03/13/07 16:05	œ	0	7		TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate				
GMT07031527-15A	GMW-1	ÂQ	03/13/07 16:30	8	0	7		9	TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate				
GMT07031527-16A	GMW-36	AQ	03/13/07 16:50	œ	0	۲ 		9	TPHE(0.10) +Vinyl acetate	TPHE(0.10) +Vinyl acetate				
Comments:	Security seals intact. Frozen ice. Fax results to Geomatrix (Attn:Shiow-Whei Chow) in hard copy, EDD and PDF Signature Print Name	tact. Fro	vzen ice. Fax resul Signature	esults to ure	Geomatri	(Attn:S	Shiow-Whe	i Chow) in	hard copy. Pri	EDD and PL	oF format. :	Company	INY	Date/Time
Logged in by:		7						-		Print Name		Alpha Analytical, Inc.		olictan iss.5

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type : AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other


Billing Information :		CHA	CHAIN-OF-CUSTODY RECO	USTO	DY R	ECORD		Page:	3 of 3
-		255	Alpha Anal 255 Glendale Avenue, Suite 21		lytical, Inc. Sparks, Nevada 89431-5778	9431-5778	WorkOrder :		7
Client: Geomatrix Consultants 510 Superior Avenue, Suite 200	8	<u>Shiov</u> TEL : (949) 6 FAX · (949) 6	Shiow-Whei Chou (949) 642-0245 (949) 642-4474				EDD Required : Yes		
Newnort Reach CA 92663-36	27		swchow@geomatrix.com				Sampled by : Angie Wagner	lgie Wagner	
Report Attention : Shiow-Whei Chou	27 i Chou	Job : KME	KMEP-Norwalk				Cooler Temp	Samples Received	Date Printed
				Client	Client's COC # :	10064, 10063	4 °C	15-Mar-07	15-Mar-07
QC Level : SC3 = Final R	ot, MBLK, LCS,	Final Rpt, MBLK, LCS, MS/MSD With Surrogates and Chromatograms	gates and Chroma	atograms					
						Request	Requested Tests		
Alpha Client	Colle	Collection No. of Bottles	•	TPH/E_W	TPH/P_W	VOC_W			
Sample ID Sample ID	Matrix D	Date ORG SUB	3 TAT PWS#					Sample	Sample Remarks
GMT07031527-17A MW-8	AQ 03/13/07 17:02	3/13/07 8 0 17:02	7	TPHE(0.10) +Vinyl acetate	TPHE(0.10) TF +Vinyl acetate	TPHE(0.10) +Vinyl acetate			
GMT07031527-18A GMW-39	AQ 03/13/07 17:15	3/13/07 8 0 17:15 0	7	TPHE(0.10) +Vinyl acetate	TPHE(0.10) TF +Vinyl acetate	TPHE(0.10) +Vinyl acetate			
GMT07031527-19A EXP-1	AQ 03/1 17	03/13/07 8 0 17:30	7	TPHE(0.10) +Vinyl acetate	TPHE(0.10) TF +Vinyl acetate	TPHE(0.10) +Vinyl acetate			
GMT07031527-20A MW-SF-1	AQ 03/1	03/13/07 8 0 17:45 0	7	TPHE(0.10) +Vinyl acetate	TPHE(0.10) TF +Vinyl acetate	TPHE(0.10) +Vinyl acetate			
GMT07031527-21A EXP-3	AQ 03/1	03/13/07 8 0 00:00 0	7	9	TPHE(0.10) TF +Vinyl acetate	TPHE(0.10) +Vinyl acetate			
GMT07031527-22A ZDS-2	AQ 03/13/07 00:00	3/13/07 8 0 00:00	7	TPHE(0.10) +Vinyl acetate	TPHE(0.10) TF +Vinyl acetate	TPHE(0.10) +Vinyl acetate			
GMT07031527-23A ZDS-3	AQ 03/1	03/13/07 8 0 00:00	7	TPHE(0.10) +Vinyl acctate	TPHE(0.10) TF +Vinyl acetate	TPHE(0.10) +Vinyl acetate			
GMT07031527-24A TB-1	AQ 03/12/07 00:00	2/07 4 0):00	7		TPHE(0.10) TF +Vinyl acetate	TPHE(0.10) +Vinyl acetate		Reno Trip Bl 1) 2	Reno Trip Blanks 3) 2/1/07 1) 2/7/07
Comments: <u>Security seal</u>	s intact. Frozen ic	Security seals intact. Frozen ice. Fax results to Geomatrix (Attn:Shiow-Whei Chow) in hard copy, EDD and PDF format. :	atrix (Attn:Shiow-V	Vhei Chow) in	hard copy, EI	DD and PDF format	ļ.		
		Signature			Print	Print Name	Company		Date/Time
Logged in by:	T	Munay			KM	unan	Alpha Analytical, Inc.		3/15/07 1505
	•					•			

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

J

Alpha Analyt	J	amples Collected From White CA V NV WA	-
255 Glendale Aver Sparks, Nevada 89	Suite 21	D OR OTHER	Page # of
Fax (775) 355-04	06	Analyses Required	/ 10064
P.O. # Job #	NORWALK	~	Required QC Level?
Idress Runapur e Secor, c	m	US M	
Fax # 7/4)	379-3375	1.82	EDD / EDF? YES NO
Strow - When Chone & geometric	 ₽#4	10CS	Global ID #
	** See below	-	/ REMARKS
2	No SV XX	×	
MW-0-14			
3MW-0-2		×	
5MW-0-1		+	
205-1		×	
MW-0-3	××	×	
2-5		×	
01-20		×	
1CW - 3		C	
NCW-13	××	×	
vew-7	××	· ×	
GMW-38	××	× ×	
MW-SF-7	X X X X		
Swehov & geometry	(11		
Print Name		Company	Date Time
ngic Wagner	SECOR		3/14/07 16:30
41 9700 4676			
)	
(Muray	AM	3	3/15/07 1450
		T-Tedlar	P-Plastic OT-Other
- Other **: L-Liter nless other arrangements are made. Haza by the laboratory with this coc. The liabilit	V-Voa S-Soil Jar ardous samples will be retur ty of the laboratory is limited	O-Orbo I-lediar B-Brass ned to client or disposed of at client exp d to the amount paid for the report.	P-Plastic OI-Other pense. The report for the analysis
	Alpha Analy Scale Scale Analy Pick Scale Analy Pone Pick Scale Analy Pone Pick Scale Analy Pone Pick Scale Analy Pick Pick Scale Analy Pick Pick Scale Analy Pick Pick Scale Analy Sample Description Pick Pick Sample Description Pick Pick Amw-o-14 Amw-o-14 Pick Sample Description N Amw-o-1 Sample Description N Pick Pick Amw-o-1 Amw-o-2 N Amw-o-1 Sample Description N Pick Pick N Amw-o-1 Amw-o-2 N N N Amw-o-2 Amw-o-3 Pick N N B Pictor N N N B Pictor N N N B Pictor N N N B Amy ic Manec	Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Spect. Screet, creen PO.* Note: Creet, creen PO.* Creet, Creet, creen Poly in Manager, c.s. creet, creen Sample Description Intel and type of Samager, containes Sample Description Intel and type of Samager, containes Sample Description INT Trained Sample Description INT Trained <td>Alpha Analytical, Inc. Samples Concerts on Margin Science The Margin Science Science Science The Margin Science Science</td>	Alpha Analytical, Inc. Samples Concerts on Margin Science The Margin Science Science Science The Margin Science

Billing Information:		Alpha Analytical, Inc. AZ	Samples Collected From Which State? AZ CA NV WA Parties	Pane # 2 of 2
	Fax (775	Sparks, Nevada 89431-5778 Phone (775) 355-1044 Fax (775) 355-0406	alyses	/ 10063
Client Name	P.O. #			Required OC Level?
SECOR International Inc.	" il Address	ISM)	_	I II III IV
City, State, Zip	Phone #	(fo)		EDD / EDF? YES NO
Matrix* Office Use Sampled by .	Warner Beport Attention Lei Chov agon	total and type of HALA		Giobal ID #
Lab ID Number		TAT Filed ** See below	8	REMARKS
1405 3/13 AQ GMT07031527-14	EXP-2	X Nº 8 X X	×	
	SMVV-1	× ×	×	
16	61MW - 30	XX	×	
1702 17	8- MM	×××	×	
81	6mw - 39	××	×	
19	EXP-1	× ×	×	
1745 20	MW-SF-1	XX	×	
- 21	EXP-3	××	×	
- 22	2DS-2	× ×	×	
- 1 23	2DS - 3	 × × × 	×	
$-\frac{1}{100} \downarrow$ 24	-	× / 4 v × X	×	
ADDITIONAL INSTRUCTIONS:				
send report to Shrow White alon	e gunative (SWChow e geometrix.com	ntrix.cm)		
Signature	Print Name	Cor	Company Da	Date Time
		SECOR	// ²	14/07 16:30
Relinquished by				
Received by KMMMM	C Muray	An	3/15	5/07 1450
Received by				
*Key: AQ - Aqueous SO - Soil WA - Waste OT - Other *: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.	e OT - Other **: L preported unless other arrangements are ma es received by the laboratory with this coc. T	**: L-Liter V-Voa S-Soil Jar O- 3 made. Hazardous samples will be returned xc. The liability of the laboratory is limited to	O-Orbo T-Tedlar B-Brass P- ned to client or disposed of at client expense I to the amount paid for the report.	P-Plastic OT-Other ise. The report for the analysis

S AGCON

Supplemental Report 1

May 24, 2007

The original report has been revised/corrected.

Sumeet Gandhi Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Subject: Calscience Work Order No.: Client Reference:

07-03-1599 DFSP NORWALK / 743447-01000

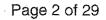
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/24/2007 and analyzed in accordance with the attached chain-of-custody.

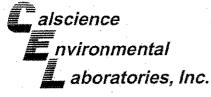
Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Rangit F. J. Clarke

Calscience Environmental Laboratories, Inc. Ranjit Clarke Project Manager


CA-ELAP ID: 1230

 ID: 1230
 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501

400

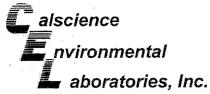
Work Order Case Narrative

Project Name: Calscience Work Order Number: DFSP NORWALK / 743447-01000 07-03-1599

1. Sample IDs:

The sample IDs for "MW-14-0307" and "MW-14DUP-0307" were incorrectly labeled as "GMW-14-0307" and "GMW-14DUP-030" in the previous report. This mistake has been corrected. No other changes have been made.

Page	3	of	29
------	---	----	----



03/24/07 Date Received: Parsons, Inc. 07-03-1599 Work Order No: 100 West Walnut Street EPA 5030B Preparation: Pasadena, CA 91124-0002 EPA 8015B (M) Method: Page 1 of 3 Project: DFSP NORWALK / 743447-01000 Date Date Lab Sample Date Analyzed QC Batch ID Matrix Instrument Prepared Collected Number Client Sample Number 03/28/07 070327B01 03/27/07 03/23/07 GC 22 GMW-61-0307 07-03-1599-1 Aqueous RL DF Qual <u>Units</u> Parameter Result 7500 100 1 ug/L TPH as Gasoline REC (%) **Control Limits** Quai Surrogates: 2 1.4-Bromofluorobenzene 200 38-134 GC 22 03/27/07 03/28/07 070327B01 07-03-1599-2 03/23/07 Aqueous GMW-60-0307 DF <u>Units</u> Qual <u>RL</u> Parameter Result ug/L 3500 100 1 TPH as Gasoline Control Limits REC (%) Qual Surrogates: 2 195 38-134 1,4-Bromofluorobenzene 03/28/07 070327B01 03/23/07 GC 22 03/27/07 GMW-47-0307 07-03-1599-3 Aqueous DF Qual Units Result RL Parameter ND 100 1 ug/L TPH as Gasoline REC (%) **Control Limits** Qual Surrogates: 1,4-Bromofluorobenzene 93 38-134 GC 22 03/27/07 03/28/07 070327B01 07-03-1599-4 03/23/07 Aqueous GMW-57-0307

Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>
TPH as Gasoline	120	100	1		ug/L
Surrogates:	<u>REC (%)</u>	Control Limits	·	Qual	
1,4-Bromofluorobenzene	99	38-134			


RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

aboratories, n						-		· · · · · · · · · · · · · · · · · · ·
Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002			Date Rec Work Orc Preparati Method:	der No:		 		03/24/07 7-03-1599 PA 5030B 8015B (M)
Project: DFSP NORWALK / 7	43447-010	00			·		P	age 2 of 3
		Lab Sample	Date	Matrix	Instrument	Date Prepared	Date	QC Batch ID
Client Sample Number GMW-58-0307		Number 07-03-1599-5	Collected 03/23/07	Aqueous	GC 22	03/27/07	4.80.000.0808	070327B01
Parameter	Result	RL	<u>DF</u>	Qual	Units			· · ·
TPH as Gasoline	1700	100	. 1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual		· .		
1,4-Bromofluorobenzene	164	38-134		2				· ,
GMW-59-0307		07-03-1599-6	03/23/07	Aqueous	GC 22	03/27/07	03/28/07	070327B01
Parameter	<u>Result</u>	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	8200	100	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	· .			
1,4-Bromofluorobenzene	152	38-134	•	2				с.,
MW-14-0307		07-03-1599-7	03/23/07	Âqueous	GC 22	03/27/07	03/28/07	070327B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	670	100	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	• .			
1,4-Bromofluorobenzene	96	38-134	х					
MW-14DUP-0307		07-03-1599-8	03/23/07	Aqueous	GC 22	03/27/07	03/28/07	070327B01
Parameter	Result	RL	DE	Qual	Units			
TPH as Gasoline	570	100	1 -	-	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	101	38-134	· .					· · · ·

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

D	-		~~
Daga	h	ΔT	1261
Page	12	UI.	63
	~	~ .	

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

07-03-1599 EPA 5030B EPA 8015B (M)

03/24/07

Project: DFSP NORWALK / 743447-01000

Page 3 of 3

FAX: (714) 894-7501

Client Sample Number	Lab Sample Number	Date Collected	Matrix	Instrument F	Date Date Prepared Analyzed	QC Batch ID	
Method Blank		099-12-247-495	N/A	Aqueous	GC 22 (03/27/07 03/27/07	070327801
Parameter	Result	RL	DE	Qual	Units	· .	
TPH as Gasoline	ND	100	1		ug/L	. · · · ·	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	•		
1,4-Bromofluorobenzene	83	38-134				· · ·	

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

							Page	e 6 of 29	
C alscience									
nvironmental		Analy	tical Repo	ort					• _
📕 aboratories, l	nc.		•			AC.	i ingit (
Parsons, Inc.			Date Red					03/24/07	
100 West Walnut Street			Work Or					7-03-1599	
Pasadena, CA 91124-0002		*	Preparat Method:	ion:				PA 3510C 8015B (M)	
	н 1. т. н		methou.				LFA		
Project: DFSP NORWALK / 7	43447-010	00					Р	age 1 of 3	
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID	
GMW-61-0307		07-03-1599-1	03/23/07	Aqueous	GC 23	03/28/07	03/28/07	070328B01	
Parameter	Result	RL	DE	Qual	Units				
TPH as Fuel Product	3100	100	1		ug/L				
	REC (%)	Control Limits	·	Qual					
Surrogates:		<u>68-140</u>		<u>George</u>		• .	,		
Decachlorobiphenyl	140	06-140							
GMW-60-0307		07-03-1599-2	03/23/07	Aqueous	GC 23	03/28/07	03/28/07	070328B01	
Parameter	Result	RL	DF	Qual	Units		•		
TPH as Fuel Product	1700	100	1		ug/L				
Surrogates:	REC (%)	Control Limits		Qual					
Decachlorobiphenyl	73	68-140							
GMW-47-0307		07-03-1599-3	03/23/07	Aqueous	GC 23	03/28/07	03/28/07	070328B01	and the second se
Parameter	Result	RL	DE	Qual	Units				
TPH as Fuel Product	420	100	· 1		ug/L				
Surrogates:	REC (%)	Control Limits		Qual		· .		·	
Decachlorobiphenyl	123	68-140							
			03/02/07	Aqueous	GC 23	03/28/07	03/28/07	070328B01	<u>a</u> l e
GMW-57-0307		07-03-1599-4	03/23/07	Addeous	96,20	03/20101	03/20/01	670320291	1,000
Parameter	Result	RL	DF	Qual	<u>Units</u>				
TPH as Fuel Product	540	100	1		ug/L			,	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual		н Т		·	
Decachlorobiphenyl	129	68-140				•			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

N

n M

Page 7 of 29

Analytical Report

Parsons, Inc.	Date Received:	03/24/07
100 West Walnut Street	Work Order No:	07-03-1599
Pasadena, CA 91124-0002	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)

Project: DFSP NORWALK / 743447-01000

Page 2 of 3

SMW-56-0307 Q7-Q3-1599-5 03/23/07 Aqueous GC 23 03/28/07 03/28/07 07/03/28/01 arameter Result RL DE Qual Units <td< th=""><th>Client Sample Number</th><th></th><th>Lab Sample Number</th><th>Date Collected</th><th>Matrix</th><th>Instrument</th><th>Date Prepared</th><th>Date Analyzed</th><th>QC Batch ID</th></td<>	Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Marian Marian<	GMW-58-0307		A REAL PROPERTY AND A REAL		Aqueous	GC 23	03/28/07	03/28/07	070328B01
Nurrogates: REC (%) Control Limits Qual becachlorobiphenyl 134 68-140 62 23 03/20/7 03/30/07 03/30/07 07/0328B0/1 GMW-S9-0307 07/033-1599-6 03/23/07 Aqueous GC 23 03/20/07 03/30/07 07/0328B0/1 Parameter Result RL DE Qual Units - <td>Parameter</td> <td>Result</td> <td><u>RL</u></td> <td>DE</td> <td>Qual</td> <td>Units</td> <td></td> <td></td> <td></td>	Parameter	Result	<u>RL</u>	DE	Qual	Units			
Number Index Index <t< td=""><td>TPH as Fuel Product</td><td>4100</td><td>100</td><td>1</td><td></td><td>ug/L</td><td></td><td></td><td></td></t<>	TPH as Fuel Product	4100	100	1		ug/L			
CMW-59-0307 D7-03-1599-6 D3/23/07 Aqueous GC 23 D3/28/07 D3/30/07 07/0328B01 Parameter Result RL DE Qual Units -<	Surrogates:	<u>REC (%)</u>	Control Limits		Qual		•		
Parameter Result RL DE Qual Units TPH as Fuel Product 15000 500 5 ug/L ug/L Surrogates: REC (%) Control Limits Qual Units ug/L Decachlorobiphenyl 75 68-140 6C 23 03/28/07 07/0328B01 MW-14-0307 07-03-1599-7 03/23/07 Aqueous GC 23 03/28/07 07/0328B01 Parameter Result RL DE Qual Units -	Decachlorobiphenyl	134	68-140	' ,					
Late Late <th< td=""><td>GMW-59-0307</td><td></td><td>07-03-1599-6</td><td>03/23/07</td><td>Aqueous</td><td>GC 23</td><td>03/28/07</td><td>03/30/07</td><td>070328B01</td></th<>	GMW-59-0307		07-03-1599-6	03/23/07	Aqueous	GC 23	03/28/07	03/30/07	070328B01
Burrogates: REC (%) Control Limits Qual Decachlorobiphenyl 75 68-140 MW-14-0307 07-03-1599-7 03/23/07 Aqueous GC 23 03/28/07 03/28/07 070328B01 Parameter Result RL DE Qual Units V	Parameter	Result	RL	DE	Qual	<u>Units</u>			
Decachlorobiphenyl 75 68-140 MW-14-0307 07.03-1599-7 03/23/07 Aqueous GC 23 03/28/07 03/28/07 07/0328B01 Parameter Result RL DE Qual Units V <thv< th=""> V <th<< td=""><td>TPH as Fuel Product</td><td>15000</td><td>500</td><td>5</td><td>·</td><td>ug/L</td><td></td><td></td><td></td></th<<></thv<>	TPH as Fuel Product	15000	500	5	·	ug/L			
MW-14-0307 07-03-1599-7 03/23/07 Aqueous GC 23 03/28/07 03/28/07 07/0328B01 Parameter Result RL DE Qual Units	Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Parameter Result RL DE Qual Units TPH as Fuel Product 3400 100 1 ug/L Surrogates: REC (%) Control Limits Qual Decachlorobiphenyl 133 68-140 MW-14DUP-0307 07-03-1599-8 03/23/07 Aqueous GC 23 03/28/07 03/28/07 07/0328801 Parameter Result RL DE Qual Units Units TPH as Fuel Product 3800 100 1 ug/L Surrogates: REC (%) Control Limits Qual	Decachlorobiphenyl	75	68-140	a ₀					
ParameterResultRLDEQualUnitsTPH as Fuel Product34001001ug/LSurrogates:REC (%)Control LimitsQualDecachlorobiphenyl13368-140-MW-14DUP-030707-03-1599-803/23/07ÁqueousGC 2303/28/0703/28/0707/0328801ParameterResultRLDEQualUnitsTPH as Fuel Product38001001ug/LSurrogates:REC (%)Control LimitsQualUnits	MW-14-0307		07-03-1599-7	03/23/07	Aqueous	GC 23	03/28/07	03/28/07	070328B01
Surrogates: REC (%) Control Limits Qual Decachlorobiphenyl 133 68-140 MW-14DUP-0307 07-03-1599-8 03/23/07 Aqueous GC 23 03/28/07 03/28/07 07/0328B01 Parameter Result RL DE Qual Units TPH as Fuel Product 3800 100 1 ug/L Surrogates: REC (%) Control Limits Qual	Parameter	<u>Result</u>	<u>RL</u>	DE	<u>Qual</u>	<u>Units</u>			х. · · ·
Decachlorobiphenyl 133 68-140 MW-14DUP-0307 07-03-1599-8 03/23/07 Aqueous GC 23 03/28/07 03/28/07 07/0328B01 Parameter Result RL DE Qual Units TPH as Fuel Product 3800 100 1 ug/L Surrogates: REC (%) Control Limits Qual	TPH as Fuel Product	3400	100	. 1		ug/L			
MW-14DUP-0307 07-03-1599-8 03/23/07 Aqueous GC 23 03/28/07 03/28/07 07/03/28B01 Parameter Result RL DF Qual Units TPH as Fuel Product 3800 100 1 ug/L Surrogates: REC (%) Control Limits Qual	Surrogates:	<u>REC (%)</u>	Control Limits		Qual				а 1917 — 1917 1917 — 1917
Parameter Result RL DE Qual Units TPH as Fuel Product 3800 100 1 ug/L Surrogates: REC (%) Control Limits Qual	Decachlorobiphenvl	133	68-140						
TPH as Fuel Product 3800 100 1 ug/L Surrogates: REC (%) Control Limits Qual	MW-14DUP-0307		07-03-1599-8	03/23/07	Àqueous	GC 23	03/28/07	03/28/07	070328B01
Surrogates: REC (%) Control Limits Qual	Parameter	Result	RL	DE	Qual	<u>Units</u>			•
	TPH as Fuel Product	3800	100	1		ug/L			
Decachlorobiphenyl 77 68-140	Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
	Decachlorobiphenyl	77	68-140	·					

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

	cience
E_n	vironmental
<u>a</u>	aboratories, Inc.

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: Work Order No: Preparation: Method:

03/24/07 07-03-1599 EPA 3510C EPA 8015B (M)

Page 3 of 3

Project: DFSP NORWALK / 743447-01000

Client Sample Number	Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID	
Method Blank		099-12-382-5	N/A	Aqueous	GC 23	03/28/07	03/28/07	070328B01
Parameter	Result	RL	DF	Qual	<u>Units</u>			
TPH as Fuel Product	ND	100	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	-		1997 - 19	
Decachlorobiphenyl	101	68-140		, I				н

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

h.M

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Page 8 of 29

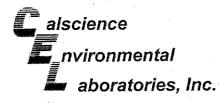
Page 9 of 29

*C*alscience *nvironmental aboratories, Inc.*

Analytical Report

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	03/24/07
Work Order No:	07-03-1599
Preparation:	EPA 5030E
Method:	EPA 8260E
Units:	ug/L
	Page 1 of 11


Project: DFSP NORWALK / 743447-01000

Client Sample Number				o Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyz	· · ·	C Batch	ı ID
GMW-61-0307			07-03-1	eneka isti	s de la surgera de ser d	Aqueous	GC/MS FF	03/30/07	1.1.1.1.1.1.1.1.1.1		70330LC	Я
Parameter	Result	RL	DE	Qual	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>	
Acetone	ND	500	10		c-1,3-Dichlorop	ropene		ND	5.0	10		
Benzene	1200	5.0	10		t-1,3-Dichloropr	opene		ND	5.0	10		
Bromobenzene	ND	10	10		Ethylbenzene			220	5.0	10		
Bromochloromethane	ND	10	10		2-Hexanone			ND	100	10		
Bromodichloromethane	ND	10 -	10		isopropylbenzer			67	10	10		
Bromoform	ND	10	. 10		p-Isopropyltolue			ND	10	10		
Bromomethane	ND	50	10		Methylene Chlo			ND	50	10		
2-Butanone	ND	100	10	1	4-Methyl-2-Pen	tanone		ND	100	10		
n-Butylbenzene	ND.	10	10		Naphthalene			ND	100	10		
sec-Butylbenzene	ND	10	10		n-Propylbenzen	e		63	10	10		
tert-Butylbenzene	ND	10	10		Styrene			ND	10	10		
Carbon Disulfide	ND .	100	10		1,1,1,2-Tetrach	loroethane		ND	10	10		
Carbon Tetrachloride	ND	5.0	10		1,1,2,2-Tetrach	loroethane		ND	10	10		
Chlorobenzene	ND .	10	10		Tetrachloroethe	ene		ND	10	10		
Chloroethane	ND	10	10	· · ·	Toluene			16	5.0	10		
Chloroform	ND	10	10		1,2,3-Trichlorot	enzene		ND	10	10		
Chloromethane	ND	50	10		1,2,4-Trichlorot	penzene		ND	10	10		
2-Chlorotoluene	ND	10	10		1,1,1-Trichloroe			ND	10	10		
4-Chlorotoluene	ND	10	10		1,1,2-Trichloro-		oroethane	ND	100	10		
Dibromochloromethane	ND	10	10		1,1,2-Trichloroe			ND	10	· 10		
1,2-Dibromo-3-Chioropropane	ND	50	10		Trichloroethene	• • • •		ND	10	10		
1,2-Dibromoethane	ND	10	10		Trichlorofluoror	nethane		ND	100	10		
Dibromomethane	ND	10	10		1,2,3-Trichloro			ND	50	10		
1,2-Dichlorobenzene	ND	10	10		1,2,4-Trimethyl			320	10	10		
1,3-Dichlorobenzene	ND	.10	10		1,3,5-Trimethyl	benzene		80	10	10		
1,4-Dichlorobenzene	ND	10	10		Vinyl Acetate			ND	100	10		
Dichlorodifluoromethane	ND	10	10		Vinyl Chloride			ND	5.0	10		
1,1-Dichloroethane	ND	· 10	10		p/m-Xylene			1100	5.0	10		
1,2-Dichloroethane	ND	5.0	10		o-Xylene			240	5.0	10		
1,1-Dichloroethene	ND	10	10		Methyl-t-Butyl E		E)	ND	5.0	. 10		
c-1,2-Dichloroethene	ND	10	10		Tert-Butyl Alcol			ND	100	10		
t-1,2-Dichloroethene	ND	10	10		Diisopropyl Eth	· /		ND	20	10		
1,2-Dichloropropane	ND	10	10		Ethyl-t-Butyl Et			ND	.20	10		
1,3-Dichloropropane	ND	10	10		Tert-Amyl-Meth	iyl Ether (T	AME)	ND	20	10		
2,2-Dichloropropane	ND	10	10		Ethanol			ND	1000	10		
1,1-Dichloropropene	ND	10	10									
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			<u>REC (%)</u>	Control		Qual	
		<u>Limits</u>							Limits			
Dibromofluoromethane	102	74-140			1,2-Dichloroeth			106	74-146			
Toluene-d8	105	88-112			1,4-Bromofluor	obenzene		101	74-110			

RL - Reporting Limit , DF - I

h Al

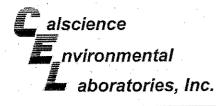
DF - Dilution Factor , Qual - Qualifiers

An	aly	ti	cal	Re	por	rļ

ľ

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

	03/24/07
	07-03-1599
	EPA 5030B
	EPA 8260B
	ug/L
. · · · .	Page 2 of 11


Project: DFSP NORWALK / 743447-01000

Client Sample Number		:		b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyz	~	C Batch ID
GMW-60-0307			07-03-1	599-2	03/23/07	Aqueous	GC/MS FF	03/30/07	03/30/	0 70	70330L01
Parameter	Result	<u>RL</u>	DE	Qual	Parameter	· · ·	-	Result	RL	DE	Qual
Acetone	ND	250	5		c-1,3-Dichloro	propene		ND	2.5	5	
Benzene	490	2.5	5		t-1,3-Dichlorop	propene		ND	2.5	5	
Bromobenzene	ND	5.0	5		Ethylbenzene			87	2.5	5	
Bromochloromethane	ND	5.0	5		2-Hexanone			ND	50	5	
Bromodichloromethane	ND	5.0	5		Isopropylbenz	erie		66	5.0	5	
Bromoform	ND	5.0	5		p-isopropyltolu	lene		ND	5.0	5	
Bromomethane	ND	25	5		Methylene Chi	oride		26	25	5	
2-Butanone	ND	50	5		4-Methyl-2-Pe	ntanone		ND .	50	5	
n-Butvibenzene	ND	5.0	5		Naphthalene			93	50	5	
sec-Butylbenzene	11	5.0	5		n-Propylbenze	ne		68	5.0	5	
tert-Butylbenzene	ND	5.0	5		Styrene			ND	5.0	5	
Carbon Disulfide	ND	50	5		1,1,1,2-Tetrac	hioroethane		ND	5.0	5	
Carbon Tetrachloride	ND	2.5	5		1,1,2,2-Tetrac	hloroethane		ND	5.0	5	
Chlorobenzene	ND	5.0	5		Tetrachloroeth	ene		ND	5.0	5	
Chloroethane	ND	5.0	5		Toluene			ND	2.5	5	
Chloroform	ND	5.0	5		1,2,3-Trichlord	benzene		ND	5.0	5	
Chioromethane	ND	25	5		1,2,4-Trichior	benzene		ND	5.0	5	
2-Chlorotoluene	ND	5.0	5		1,1,1-Trichior	bethane		ND	5.0	5	
4-Chiorotoluene	ND	5.0	5		1,1,2-Trichlor		loroethane	ND	50	5	
Dibromochloromethane	ND	5.0	5		1,1,2-Trichlord			ND	5.0	5	•
1.2-Dibromo-3-Chloropropane	ND	25	5		Trichloroether	e		ND	5.0	5	
1.2-Dibromoethane	ND	5.0	5		Trichlorofluor	omethane		ND	50	5	•
Dibromomethane	ND	5.0	5	· * /	1,2,3-Trichlor	opropane		ND	25	5	
1,2-Dichlorobenzene	ND	5.0	5		1,2,4-Trimeth			36	5.0	5	
1,3-Dichlorobenzene	ND	5.0	5		1,3,5-Trimeth	, Vibenzene		ND	5.0	5	1
1.4-Dichlorobenzene	ND	5.0	5		Vinyl Acetate			ND	50	5	
Dichlorodifluoromethane	ND	5.0	5		Viny! Chioride			ND	2.5	5	
1,1-Dichloroethane	ND	5.0	5		p/m-Xylene		· .	43	2.5	5	
1.2-Dichloroethane	ND	2.5	5		o-Xylene			37	2.5	5	
1.1-Dichloroethene	ND	5.0	5		Methyl-t-Butyl	Ether (MTE	SE)	ND	2.5	5	
c-1.2-Dichloroethene	ND	.5.0	5		Tert-Butyl Alc		· ·	ND	50	5	
t-1,2-Dichloroethene	ND	5.0	5		Diisopropyl El		·	ND	10	5	
1,2-Dichloropropane	ND	5.0	5		Ethyl-t-Butyl E)	ND	10	5	
1,3-Dichloropropane	ND	5.0	5		Tert-Amyl-Me			ND	10	5	
2,2-Dichloropropane	ND	5.0	5		Ethanol	- \		ND	500	5	
1,1-Dichloropropene	ND	5.0	5								
Surrogates:	REC (%)	Control	5	Qual	Surrogates:			REC (%)	Control		Quai
Curroyatee.		Limits							Limits		
Dibromofluoromethane	101	74-140			1,2-Dichloroe	lhane-d4		104	74-146		
Toluene-d8	105	88-112			1.4-Bromofluo	vrohonzona		101	74-110		

RL - Reporting Limit ,

h M

Page 11 of 29

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	03/24/07
Work Order No:	07-03-1599
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	ug/L
	Page 3 of 11

Project: DFSP NORWALK / 743447-01000

Client Sample Number				ib Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analvze	d Q	C Batch ID
GMW-47-0307			07-03-	3846.0°21.0	03/23/07	Aqueous	GC/MS FF	03/29/07	03/29/0	14.11 22	0329L01
Parameter	Result	RL	DE	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone	ND	50	1		c-1,3-Dichloro	propene		ND ·	0.50	1	
Benzene	11	0.50	1		t-1,3-Dichlorog			ND	0.50	1	
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	0.50	1	•
Bromochloromethane	ND	1.0	1		2-Hexanone	· ·		ND	10	1	
Bromodichloromethane	ND .	1.0	1		Isopropylbenze	ene		1.9	1.0	1	
Bromoform	ND	1.0	1		p-isopropyltolu	iene		ND	1.0	1	
Bromomethane	ND	5.0	1		Methylene Chl	oride		ND	5.0	1	
2-Butanone	ND	10	1	14 A.	4-Methyl-2-Pe			ND	10	.1	
n-Butvlbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	1.0	1.0	1		n-Propylbenze	ne		ND	1.0	1.	
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac	hloroethane		ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	hloroethane		ND	1.0	1	
Chlorobenzene	ND	1.0	1		Tetrachloroeth	iene		ND	1.0	1	
Chloroethane	ND	1.0	1		Toluene		· .	ND	0,50	1	· · · · ·
Chloroform	ND	1.0	1		1,2,3-Trichlor	obenzene		ND	1.0	1	
Chloromethane	ND	5.0	1		1,2,4-Trichlord	obenzene		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		1,1,1-Trichlord			ND	1.0	1	. •
4-Chlorotoluene	ND	1.0	1		1.1.2-Trichlord		Joroethane	ND	10	1	
Dibromochloromethane	ND	1.0	. 1		1.1.2-Trichlor	bethane		ND	1.0	.1	•
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroether			ND	1.0	1	
1.2-Dibromoethane	ND	1.0	1		Trichiorofluoro	methane		ND	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor			ND	5.0	1	
1.2-Dichlorobenzene	ND	1:0	1		1,2,4-Trimeth			ND	1.0	1	
1.3-Dichlorobenzene	ND	1.0	1	1. A. A.	1,3,5-Trimeth			ND	1.0	1	
1.4-Dichlorobenzene	ND	1.0	1		Vinvl Acetate	,	·	ND	10	1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride			ND	0.50	1	
1.1-Dichloroethane	ND	1.0	1		p/m-Xvlene	· .		ND	0.50	1	•
1.2-Dichloroethane	ND	0.50	1		o-Xvlene			ND	0.50	1	
1.1-Dichloroethene	ND	. 1.0	, 1		Methyl-t-Butyl	Ether (MTB	SE)	ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1 1		Tert-Butyl Alc		,	ND	10	1	
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl Et			ND	2.0	1.	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl E	• •	ń	ND	2.0	1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Me		· ·	ND	2.0	1	
2,2-Dichloropropane	ND	1.0	1		Ethanol		,	ND	100	i	
	ND	1.0	1								
1,1-Dichloropropene	REC (%)	Control	I	Qual	Surrogates:			REC (%)	Control	1.1	Qual
Surrogates:	<u>NEO 1/01</u>	Limits		<u>uşuai</u>	<u>Sanogaros.</u>		· ·	******	Limits		.maaddd
Dibromofluoromethane	103	74-140			1,2-Dichloroe	thane-d4		104	74-146		
Toluene-d8	105	88-112			1,4-Bromofluc			104	74-110		
i olugile up	100	00-112			.,						

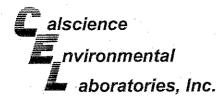
RL - Reporting Limit ,

n . M

Qual - Qualifiers .

DF - Dilution Factor

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002


03/24/07
07-03-1599
EPA 5030B
EPA 8260B
ug/L
Page 4 of 11

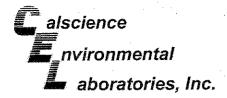
Project: DFSP NORWALK / 743447-01000

Client Sample Number	· .			ib Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Dat Analy		QC Batch	ו D
GMW-57-0307			07-03-	komi sa masa sa	03/23/07	Aqueous	GC/MS FF	03/29/07	03/29	/07	070329L(01
Parameter	Result	RL	DE	Qual	Parameter	·		<u>Result</u>	RL	DF	Qual	
Acetone	ND	50	1		c-1,3-Dichloro	propene		ND	0.50	1		
Benzene	ND	0.50	1		t-1,3-Dichlorop	propene		ND	0.50	. 1		
Bromobenzene	ND	1.0	1		Ethylbenzene	1. S.		ND	0.50	1		
Bromochloromethane	ND	1.0	1		2-Hexanone			ND	10	1		
Bromodichloromethane	ND	1.0	1		Isopropylbenze	ene		5.0	1.0	1		
Bromoform	ND	1.0	1		p-Isopropyltolu	lene		ND	1.0	<u> </u>		
Bromomethane	ND	5.0	1		Methylene Chl	oride		ND	5.0	. 1		
2-Butanone	ND	10	1		4-Methyl-2-Pe	ntanone		ND	10	- 1		1
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	-	
sec-Butylbenzene	ND	1.0	- 1		n-Propylbenze	ene .		ND	1.0	1		
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1		
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac	hloroethane		ND	1.0	. 1		
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac			ND	1.0	1		
Chlorobenzene	ND	1.0	1		Tetrachloroeth			ND	1.0	1		
Chloroethane	ND	1.0	1		Toluene			ND	0.50	.1		
Chloroform	ND	1.0	1		1,2,3-Trichlord	obenzene		ND	1.0	. 1		
Chloromethane	ND	5.0	1		1,2,4-Trichior			ND	1.0	1		
2-Chlorotoluene	ND	1.0	. 1		1,1,1-Trichlor			ND	1.0	1		
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor		uoroethane	ND	10	1		
Dibromochloromethane	ND	1.0	1		1.1.2-Trichlor			ND	1.0	1		
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroether		-	ND	1.0	1		
1.2-Dibromoethane	ND	1.0	1		Trichlorofluor	-		ND	10	1	, i	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor			ND	5.0	. 1		
1.2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimeth			ND	1.0	1		
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimeth	<i>,</i>		ND	1.0	· 1		
1,4-Dichlorobenzene	ND	1.0	· 1		Vinyl Acetate	yib Grizorio		ND	10	1		
Dichlorodifluoromethane	ND	1.0	1	· ·	Vinyi Chloride			ND	0.50	1		
1,1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	0.50	. 1		
	ND	0.50	1		o-Xylene			ND	0.50	1		
1,2-Dichloroethane 1,1-Dichloroethene	ND	1.0	1		Methyl-t-Butyl	Ether (MTE	(F)	ND	0.50	1		1.
	ND	1.0	1		Tert-Butyl Alc		· -)	ND	10			
c-1,2-Dichloroethene t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl Et			ND	2.0	1		
-	ND	1.0	1		Ethyl-t-Butyl E)	ND	2.0	•		
1,2-Dichloropropane	ND	1.0	1 1		Tert-Amyl-Me	,	,	ND	2.0	1		
1,3-Dichloropropane			1		Ethanol	anyi Lutor ()	f and then f	ND	100	1		
2,2-Dichloropropane	ND ND	1.0	- 1						100	. '		
1,1-Dichloropropene	ND REC (%)	1.0 Control	1	Qual	Surrocatoo			REC (%)	Control		Qual	
Surrogates:		<u>Control</u> Limits		Qual	Surrogates:			11LU (70]	Limits		<u>yyua</u>	
Dibromofluoromethane	103	<u>umits</u> 74-140			1,2-Dichloroe	thane_d4		106	74-146			
	103	88-112		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1,4-Bromofluc			101	74-110			
Toluene-d8	. 104	00-142			r,-r-bromonad				177-110			

hM

Page 13 of 29

Analytical Repo	rl
-----------------	----


Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	03/24/07
Work Order No:	07-03-1599
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	ug/L
	Page 5 of 11

Project: DFSP NORWALK / 743447-01000

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d Q	C Batch ID
GMW-58-0307			07-03-	1599-5	03/23/07	Aqueous	GC/MS FF	03/30/07	03/30/0	7 0	70330L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Acetone	ND	100	2		c-1,3-Dichloro	oropene	· · · · · ·	ND	1.0	2	
Benzene	350	1.0	2		t-1,3-Dichlorop	ropene		ND	1.0	2	
Bromobenzene	ND.	2.0	2		Ethylbenzene			5.9	1.0	2	
Bromochloromethane	ND	2,0	2		2-Hexanone			ND	20	2	
Bromodichloromethane	ND	2.0	2		Isopropylbenze	ene		45	2.0	2	
Bromoform	ND	2.0	2	· · ·	p-Isopropyitolu	ene		5.7	2.0	2	÷
Bromomethane	ND	10	2		Methylene Chl	oride		ND	10	2	
2-Butanone	ND	20	2		4-Methyl-2-Per	ntanone		ND	20	2	
n-Butylbenzene	ND	2.0	2		Naphthalene			ND	20	2	
sec-Butylbenzene	8.0	2.0	2		n-Propylbenze	ne		27	2.0	2	
tert-Butylbenzene	ND	2.0	2		Styrene			ND	2.0	2	
Carbon Disulfide	ND	20	· 2		1,1,1,2-Tetracl	nloroethane		ND	2.0	2	
Carbon Tetrachloride	ND	1.0	2		1,1,2,2-Tetracl			ND	2.0	2	
Chlorobenzene	ND	2.0	2		Tetrachloroeth			ND	2.0	2	
Chioroethane	ND	2.0	2		Toluene			ND	1.0	2	
Chioroform	ND	2.0	2		1,2,3-Trichlord	benzene		ND	2.0	2	
Chloromethane	ND	10	2	1 - F	1.2.4-Trichlord			ND	2.0	2	
2-Chlorotoluene	ND	2.0	2		1,1,1-Trichlord			ND	2.0	2	
4-Chlorotoluene	ND	2.0	2		1,1,2-Trichlord		oroethane	ND	20	2	
Dibromochloromethane	ND	2.0	2		1,1,2-Trichloro		01000.10110	ND	2.0	2	
1,2-Dibromo-3-Chloropropane	ND	10	2		Trichloroethen			ND	2.0	2	· .
1,2-Dibromoethane	ND	2.0	2		Trichlorofluoro			ND	20	2	
Dibromomethane	ND	2.0	2		1,2,3-Trichlord			ND	10	-2	
1,2-Dichlorobenzene	ND	2.0	2		1,2,4-Trimethy		· ·	4.2	2.0	2	
1.3-Dichlorobenzene	ND	2.0	2		1,3,5-Trimethy			ND	2.0	2	
1.4-Dichlorobenzene	ND	2.0	2		Vinyl Acetate	noren izlen ie		ND	20	2	
Dichlorodifluoromethane	ND	2.0	2		Vinyl Chloride			ND	1.0	2	
1,1-Dichloroethane	ND	2.0	2		p/m-Xylene			1.5	1.0	2	
1.2-Dichloroethane	ND	2.0 1.0	2		o-Xviene			ND	1.0	2	
1,1-Dichloroethene	ND	2.0	2		Methyl-t-Butyl	Ethor /MTR	=) .	ND	1.0	2	
the second s	ND.	2.0			Tert-Butyl Alco		<i>۱</i>	ND	20	2	
c-1,2-Dichloroethene	ND	2.0	2 2		Diisopropvi Eti			ND	4.0	2	
t-1,2-Dichloroethene			_		Ethyl-t-Butyl E	· /	.	ND		2 2	
1,2-Dichloropropane	ND	2.0	2					=	4.0		
1,3-Dichloropropane	ND	2.0	2		Tert-Amyl-Met	ауп⊏шег(Т		ND ND	4.0	2	
2,2-Dichloropropane	ND	2.0	2	· .	Ethanol			NU	200	2	
1,1-Dichloropropene	ND	2.0	2	Quat	C. incarate c				Control		Ouel
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:		, ,	<u>REC (%)</u>	<u>Control</u> Limits		Qual
Discoursely common of home	100	Limits			1.2-Dichloroet	hono di		101	74-146		
Dibromofluoromethane Toluene-d8	100	74-140 88-112			1,4-Bromofluo				74-146		
i oluene-08	104	88-14Z			1,4**0101101100	i uberizerie	••	100	74-110		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	03/24/07
Work Order No:	07-03-1599
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	ug/L
	Page 6 of 11

Project: DFSP NORWALK / 743447-01000

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyz	~	C Batch ID
GMW-59-0307			07-03-1	599-6	03/23/07	Aqueous	GC/MS FF	03/29/07	03/29/	07 07	70329L01
Parameter	<u>Result</u>	RL	DE	Qual	Parameter	÷		Result	RL	DE	Qual
Acetone	ND	250	5		c-1,3-Dichloro	propene		ND	2.5	5	
Benzene	840	2.5	5		t-1,3-Dichlorop	propene		ND	2.5	5	
Bromobenzene	ND	5.0	5		Ethylbenzene	ę.		ND	2.5	5	
Bromochloromethane	ND	5.0	5		2-Hexanone			ND	50	5	
Bromodichloromethane	ND	5.0	5		Isopropylbenz	ene		28	5.0	5	
Bromoform	ND	5.0	5		p-Isopropyltolu	iene		NÐ	5.0	- 5	
Bromomethane	ND	25	5		Methylene Chl	oride		ND	25	5	
2-Butanone	ND	50	5		4-Methyl-2-Pe	ntanone		ND	50	5	
n-Butylbenzene	ND	5.0	5		Naphthalene			ND	50	5	
sec-Butylbenzene	5.8	5.0	5.		n-Propylbenze	ne		27	5.0	5	
tert-Butylbenzene	ND	. 5.0	5		Styrene			ND	5.0	- 5	
Carbon Disulfide	ND	50	5		1,1,1,2-Tetrac	hloroethane	L ·	ND	5.0	5	
Carbon Tetrachloride	ND	. 2.5	5		1,1,2,2-Tetrac	hloroethane	}	ND	5.0	5	
Chlorobenzene	ND	5.0	5		Tetrachloroeth	ene		ND	5.0	-5	
Chioroethane	ND	5.0	5		Toluene			ND	2.5	5	
Chloroform	ND	5.0	5		1,2,3-Trichlord	benzene		ND	5.0	5	
Chloromethane	ND	25	5		1,2,4-Trichlord	benzene		ND	5.0	5	
2-Chlorotoluene	ND	5.0	. 5		1,1,1-Trichlord	bethane	•	ND	5.0	5	
4-Chlorotoluene	ND	5.0	5		1,1,2-Trichlord	5-1,2,2-Trifle	uoroethane	ND	50	5	
Dibromochloromethane	ND	5.0	5		1,1,2-Trichlord	bethane		ND	5.0	5	
1,2-Dibromo-3-Chloropropane	ND	25	5		Trichloroether	e		ND	5.0	5	
1.2-Dibromoethane	ND	5.0	5		Trichlorofluor	methane		ND	50	5	
Dibromomethane	ND	5.0	5		1,2,3-Trichlor	opropanie		ND	25	5	
1.2-Dichlorobenzene	ND	5.0	5		1,2,4-Trimeth	lbenzene		ND	5.0	5	
1,3-Dichlorobenzene	ND	5.0	5		1,3,5-Trimeth	lbenzene		ND	5.0	5	
1,4-Dichlorobenzene	ND	5.0	5		Vinyl Acetate			ND	50	5	
Dichlorodifluoromethane	ND	5.0	5		Vinyl Chloride		· .	ND	2.5	5	
1,1-Dichloroethane	ND	5.0	5		p/m-Xylene			ND	2.5	5	· · ·
1,2-Dichloroethane	ND	2.5	5		o-Xylene			, ND	2.5	5	•
1,1-Dichloroethene	ND	- 5.0	5		Methyl-t-Butyl	Ether (MTE	BE)	ND	2.5	5	
c-1.2-Dichloroethene	ND	5.0	5		Tert-Butyl Alc	ohol (TBA)		ND	50	5	
t-1,2-Dichloroethene	ND	5.0	5		Diisopropyl Et	her (DIPE)		ND	10	5	
1,2-Dichloropropane	ND	5.0	5		Ethyl-t-Butyl E		.)	ND	10	5	
1,3-Dichloropropane	ND	5.0	5		Tert-Amyl-Me	thyl Ether (1	TAME)	ND	10	5	
2,2-Dichloropropane	ND	5.0	5		Ethanol			ND	500	5	
1,1-Dichloropropene	ND	5.0	5		8						
Surrogates:	REC (%)	Control	-	Qual	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
		Limits			-				Limits		
Dibromofluoromethane	103	74-140			1,2-Dichloroe	lhane-d4		106	74-146		
Toluene-d8	106	88-112			1,4-Bromofluc	probenzene		100	74-110		
· · ·											

м

Qual - Qualifiers

alscience nvironmental **Analytical Report** aboratories, Inc. D Parsons, Inc. 100 West Walnut Street M Ρ

Page 15 of 29

Pasadena, CA 91124-0002.

Date Received:	03/24/07
Work Order No:	07-03-1599
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	ug/L
	Page 7 of 11

Project: DFSP NORWALK / 743447-01000

Client Sample Number			Lab Sample Number	e Date Collected Matrix Instrumer	Date nt Prepared	Date Analyz	~	C Batch ID
MW-14-0307			07-03-1599-7	03/23/07 Aqueous GC/MS F	F 03/29/07	03/29/	07 07	0329L01
Parameter	Result	<u>RL</u>	DF Qual	Parameter	Result	RL	<u>DF</u>	Qual
Acetone	ND	50	. 1	c-1,3-Dichloropropene	ND	0.50	1	
Benzene	ND	0.50	1	t-1,3-Dichloropropene	ND	0.50	1	
Bromobenzene	ŅD	1.0	1	Ethylbenzene	ND	0,50	1	
Bromochloromethane	ND	1.0	1	2-Hexanone	ND	10	1	
Bromodichloromethane	ND	1.0	1	Isopropylbenzene	ND	1.0	1	
Bromoform	ND	- 1.0	1	p-Isopropyltoluene	ND	1.0	1	
Bromomethane	ND	5.0	1	Methylene Chloride	ND	5.0	1	
2-Butanone	ND	10	- 1	4-Methyl-2-Pentanone	ND	10	1	
n-Butylbenzene	ND	1.0	1	Naphthalene	ND	10	1	
sec-Butylbenzene	ND	1.0	1	n-Propylbenzene	ND	1.0	1	
tert-Butylbenzene	ND	1.0	1	Styrene	ND	1.0	1 .	
Carbon Disulfide	ND	10	1	1,1,1,2-Tetrachloroethane	ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1	1,1,2,2-Tetrachloroethane	ND	1.0	1	
Chlorobenzene	ND	1.0	1	Tetrachloroethene	ND	1.0	1	
Chloroethane	ND	1.0	1	Toluene	ND	0.50	1	
Chloroform	ND	1.0	1	1,2,3-Trichlorobenzene	ND .	1.0	1	· ·
Chloromethane	ND	5.0	1	1,2,4-Trichlorobenzene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1	1,1,1-Trichloroethane	ND	1.0	1	
4-Chlorotoluene	ND	1.0	1	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1	
Dibromochloromethane	ND	1.0	1	1,1,2-Trichloroethane	ND	1.0	1	
1,2-Dibromo-3-Chioropropane	ND	5.0	1	Trichloroethene	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1	Trichlorofluoromethane	ND	10	1	
Dibromomethane	ND	1.0	1	1,2,3-Trichloropropane	ND	5.0	1	
1,2-Dichlorobenzene	ND	1.0	1	1,2,4-Trimethylbenzene	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1	1,3,5-Trimethylbenzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	1.0	1	Vinyl Acetate	ND	10	1	
Dichlorodifluoromethane	ND	1.0	1	Vinyl Chloride	ND	0.50	. 1	
1,1-Dichloroethane	ND	1.0	1	p/m-Xylene	ND	0.50	1	
1,2-Dichloroethane	0,94	0.50	1	o-Xylene	ND	0.50	1	
1,1-Dichloroethene	ND	1.0	1	Methyl-t-Butyl Ether (MTBE)	3.5	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1	Tert-Butyl Alcohol (TBA)	29	10	1	
t-1,2-Dichioroethene	ND	1.0	1 .	Diisopropyl Ether (DIPE)	ND	2.0	1	
1,2-Dichloropropane	ND	1.0	1	Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1	
1,3-Dichloropropane	ND	1.0	1	Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1	
2,2-Dichloropropane	ND .	1.0	1	Ethanoi	ND	100	1	
1,1-Dichloropropene	ND	1.0	1					
Surrogates:	REC (%)	<u>Control</u>	Qual	Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual
		<u>Limits</u>				<u>Limits</u>		
Dibromofluoromethane	103	74-140		1,2-Dichloroethane-d4	108	74-146		
Toluene-d8	105	88-112		1,4-Bromofluorobenzene	100	74-110		

RL - Reporting Limit ,

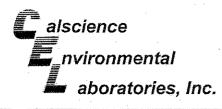
n M

DF - Dilution Factor ,

Qual - Qualifiers

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	03/24/07
Work Order No:	07-03-1599
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	ug/L
	Page 8 of 11


Project: DFSP NORWALK / 743447-01000

Client Sample Number				b Sample Number	Date Collected	Matrix	instrument	Date Prepared	Date Analyz	~	C Batch ID
MW-14DUP-0307			07-03-1	599-8	03/23/07	Aqueous	GC/MS FF	03/29/07	03/29/	07	70329L01
Parameter	Result	RL	DE	Qual	Parameter			Result	. <u>RL</u>	DE	Qual
Acetone	ND	50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichlorop	propene		ND	0.50	1	
Bromobenzene	ND	1.0	1	**	Ethylbenzene			0.64	0.50	1	
Bromochloromethane	ND	1.0	.1		2-Hexanone			ND	10	· 1	
Bromodichloromethane	ND	1.0	· 1	•	Isopropylbenze	ene		ND	1.0	1	
Bromoform	ND	1.0	1		p-Isopropyltolu	ene		ND	1.0	1	
Bromomethane	ND	5.0	1		Methylene Chl	oride		ND	5.0	1	
2-Butanone	ND	10	1		4-Methyl-2-Per	ntanone		ND	10	1	
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	ND	1.0	1		n-Propylbenze	ne		ND	1.0	1	
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetracl	hloroethane		ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	hioroethane		ND	1.0	1	
Chlorobenzene	ND	1.0	1		Tetrachloroeth	ene		ND	1.0	1	
Chioroethane	ND	1.0	1		Toluene			ND	0.50	1	÷ .
Chloroform	ND	1.0	1		1,2,3-Trichlord	benzene		ND	1.0	1	
Chloromethane	ND	5.0	1		1,2,4-Trichlord	benzene		ND	1.0	1	
2-Chiorotoluene	ND	1.0	1		1,1,1-Trichlord	ethane		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlord	-1,2,2-Triflu	oroethane	ND	10	1	
Dibromochioromethane	ND	1.0	1		1,1,2-Trichlord	ethane		ND	1.0	1	
1 2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroethen	e		ND	1.0	1	
1.2-Dibromoethane	ND	1.0	1		Trichiorofluoro	methane		ND	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlord	propane		ND	5.0	1	
1,2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimethy			1.8	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimethy			ND	1.0	1	
1.4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND	10	1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride			ND	0.50	1	
1.1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	0.50	1	
1,2-Dichloroethane	0.96	0.50	1		o-Xviene			ND	0.50	1	
1,1-Dichloroethene	ND	1.0	. 1		Methyl-t-Butyl	Ether (MTBI	E)	3.4	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1	-	Tert-Butyl Alco	hol (TBA)		29	10	1	
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl Eth			ND	2.0	1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl E	ther (ETBE)		ND	2.0	1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Met		AME)	ND	2.0	1	
2,2-Dichloropropane	ND	1.0	1		Ethanol	• • •		ND	100	1	
1,1-Dichloropropene	ND	1.0	1							•	
Surrogates:	REC (%)	Control	-	Qual	Surrogates:			REC (%)	Control		Qual
	· · ·	Limits			<u>_</u> '				Limits		
Dibromofluoromethane	104	74-140			1,2-Dichloroet	nane-d4		106	74-146		
Toluene-d8	105	88-112			1.4-Bromofluo	rohonzono		100	74-110		

n M

, Qual - Qualifiers

Ρ	age	1	7	of	29

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	03/24/07
Work Order No:	07-03-1599
Preparation:	EPA 5030E
Method:	EPA 8260E
Units:	ug/L
	Page 9 of 11

Project: DFSP NORWALK / 743447-01000

Client Sample Number				ab Sample Number	Date Collected	Matrix	instrument	Date Prepared	Date Analyz		QC Batch ID
TRIP BLANK		ę. s po	07-03-	1599-9	03/23/07	Aqueous	GC/MS FF	03/29/07	03/29/	07 0	70329L01
Parameter	Result	<u>RL</u>	DE	Qual	Parameter			Result	RL	DF	Qual
cetone	ND	50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichlorog	propene		ND	0.50	1	
Sromobenzene	ND .	1.0	1		Ethylbenzene	•		ND	0.50	1	
Bromochloromethane	ND	1.0	1		2-Hexanone		-	ND	10	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1	
Bromoform	ND	1.0	- 1		p-isopropyitolu			ND	1.0	1	
Bromomethane	ND	5.0	1		Methylene Chi			ND	5.0	1	
-Butanone	ND	10	. 1		4-Methyl-2-Pe			ND	10	1	
-Butvibenzene	ND	1.0	1		Naphthalene			ND	10	1	
ec-Butylbenzene	ND	1.0	1		n-Propylbenze	ne		ND	1.0	1	
ert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	4	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac	bloroofhane	· · · ·	ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac			ND	1.0	4	
Chlorobenzene	ND	1.0	. I 1		Tetrachioroeth			ND	1.0	1	
Chloroethane	ND	1.0	1		Toluene	ene .		ND	0.50	1	
Chloroform	ND	1.0	ı 1		1,2,3-Trichlord	bonzopo		ND	1.0	1	
Chloromethane	ND	5.0	1		1,2,4-Trichlord			ND	1.0	1	
2-Chiorotoluene	ND	5.0 1.0	•		1,1,1-Trichlord			ND		- 1	
Chlorotoluene	ND		1						1.0	1	
· - · · · - · - · - · · · · · · · · · ·	ND ND	1.0	1		1,1,2-Trichlor		oroeutarie	ND.	10	1	
Dibromochloromethane		1.0	1		1,1,2-Trichlord			ND	1.0	1	
,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroether	-		ND	1.0	1	
,2-Dibromoethane	ND	1.0	1		Trichlorofluoro			ND ·	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlord			ND	5.0	• 1•	
,2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimethy			ND	1.0	1	
,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimethy	/ibenzene		ND	1.0	1	•
,4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND	10	· 1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride			ND	0.50	1	
,1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	0.50	1	
,2-Dichloroethane	ND	0.50	1		o-Xylene			ND	0.50	1	
,1-Dichloroethene	ND	1.0	1		Methyl-t-Butyl	,	E)	ND	0,50	1	
-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Alco			ND	10	1	
-1,2-Dichloroethene	ND	1.0	1		Diisopropyl Et	her (DIPÉ)		ND	2.0	1	
,2-Dichloropropane	ND	1.0	1	,	Ethyl-t-Butyl E	ther (ETBE)	I	ND	2.0	. 1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Mel	hyl Ether (T	AME)	ND	2.0	1	• .
2,2-Dichloropropane	ND	1.0	1		Ethanol			ND	100	· 1	· · ·
,1-Dichloropropene	ND	1.0	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	103	74-140			1.2-Dichloroet	hane-d4		104	74-146		
Toluene-d8	103	88-112				nano a n		1077	1 1 1 1 1 0		

RL - Reporting Limit DF - Dilution Factor

hМ

	cience	·
n 📕	vironmental	
<u>i</u>	aboratories,	Inc.

D

00

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

03/24/07
07-03-1599
EPA 5030B
EPA 8260B
ug/L
Page 10 of 11

Project: DFSP NORWALK / 743447-01000

Client Sample Number	· · · .			b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analvze	d Q	C Batch ID
Method Blank				-006-20,8	C. Semantical Anti-addresses a	Aqueous	GC/MS FF	03/29/07	03/29/0	7 07	70329L01
Parameter	<u>Result</u>	RL	DE	Qual	Parameter			Result	RL	DE	Qual
Acetone	ND	50	1		c-1,3-Dichlorop	ropene		ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichlorop	ropene		ND	0.50	1	
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	1.0	1	
Bromochloromethane	ND	1.0	1		2-Hexanone			ND	10 🕔	1	
Bromodichioromethane	ND	1.0	1		Isopropylbenze	ne		ND	1.0	1	
Bromoform	ND	1.0	1		p-isopropyltolue	ene		ND	1.0	1	
Bromomethane	ND	10	1 -		Methylene Chic	ride	•	ND	10	1	
2-Butanone	ND	10	. 1		4-Methyl-2-Per	itanone		ND	10	1	
n-Butylbenzene	ND	1.0	1		Naphthalene		*	ND 1	10	1	
sec-Butylbenzene	ND	1.0	· 1		n-Propylbenzer	ne		ND	1.0	1	÷.,
tert-Butylbenzene	ND	1.0	1		Styrene		-	ND	1.0	.1	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrach	loroethane	· ·	ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrach	loroethane		ND	1.0	1	
Chlorobenzene	ND	1.0	1		Tetrachloroethe	ene		ND	1.0	1	
Chloroethane	ND	1.0	1		Toluene			ND	1.0	1	
Chloroform	ND	1.0	1		1,2,3-Trichloro	benzene		ND	1.0	1	
Chloromethane	ND	10	1		1,2,4-Trichloro	benzene		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		1,1,1-Trichloro	ethane		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Triflu	Joroethane	ND	10	1	
Dibromochloromethane	ND	1.0	1		1,1,2-Trichloro			ND	1.0	1	· · ·
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroethen	e [,]		ND	1.0	1	
1.2-Dibromoethane	ND	1.0	1		Trichlorofiuoro	methane	1.0	ND	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichloro	propane		ND	5.0	1	
1.2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimethy	lbenzene		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimethy	lbenzene		ND	1.0	<u> </u>	
1.4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND	10	1	
Dichlorodifluoromethane	ND ,	1.0	1		Vinyl Chloride			ND	0.50	1.	
1,1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	1.0	1	
1.2-Dichloroethane	ND	0.50	1		o-Xylene			ND	1.0	1	
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Butyl	Ether (MTE	SE) .	ND	1.0	-1.	
c-1.2-Dichloroethene	ND	1.0	1		Tert-Butyl Alco	hol (TBA)		ND	10	1	
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl Eth			ND	2.0	1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl E	ther (ETBE) .	ND	2.0	1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	2.0	1	
2,2-Dichloropropane	ND	1.0	1		Ethanol			ND	100	1	
1,1-Dichloropropene	ND	1.0	1	с							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:		· . ·	<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	100	74-140	•		1,2-Dichloroet	hane-d4		101	74-146	:	
Toluene-d8	105	88-112			1,4-Bromofluo			101	74-110		
1 Olderlo do	,	90 I I E			,						

~ AI

Qual - Qualifiers f

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	03/24/07
Nork Order No:	07-03-1599
Preparation:	EPA 5030B
vlethod:	EPA 8260B
Jnits:	ug/L
	Page 11 of 11

Project: DFSP NORWALK / 743447-01000

Client Sample Number		÷		o Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d (C Batch ID
Method Blank			099-10-	006-20,82	2 N/A	Aqueous	GC/MS FF	03/30/07	03/30/0	7 0	70330L01
Parameter	Result	<u>RL</u>	DE	Qual	Parameter			Result	RL	DF	Qual
Acetone	ND	50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichlorop	propene		ND	0.50	1	
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	1.0	1	
Bromochloromethane	ND	1.0	1		2-Hexanone			ND	10	1	•
Bromodichloromethane	ND	1.0	1		isopropylbenz	ene		ND	1.0	1	
Bromoform	ND	1.0	1		p-Isopropyitol	lene		ND -	1.0	1	• •
Bromomethane	ND	10	1		Methylene Ch	oride	÷	ND	10	1	
2-Butanone	ND	10	1		4-Methyl-2-Pe	ntanone	•	ND	10	1	
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	ND	1.0	1		n-Propylbenze	ne		ND	1.0	1	
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac			ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	hloroethane		ND	1.0	1	
Chlorobenzene	ND	1.0	1		Tetrachioroeth	ene		ND	1.0	1	
Chloroethane	ND	1.0	1 1		Toluene			ND	1.0	1	
Chloroform	ND	1.0	1		1,2,3-Trichlor	obenzene		ND	1.0	1	
Chloromethane	ND	10	1		1,2,4-Trichlor			ND j	1.0	1	
2-Chiorotoluene	ND	1.0	1		1,1,1-Trichlor			ND	1.0	4	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor	5-1,2,2-Triflu	ioroethane	ND	10	1	
Dibromochloromethane	ND	1.0	1		1,1,2-Trichlor			ND 💡 🗉	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroether			ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		Trichlorofluor	omethane		ND	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor	opropane		ND	5.0	1	
1,2-Dichiorobenzene	ND	1.0	- 1		1,2,4-Trimeth	,		ND	1.0	1	
1,3-Dichlorobenzene	NÐ	1.0	1		1,3,5-Trimeth	ylbenzene		ND	1.0	1	.*
1,4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate		•	ND .	10	1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride			ND	0.50	. 1	
1,1-Dichloroethane	ND	1.0	- 1		p/m-Xylene			ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		o-Xylene			ND	1.0	1	
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Butyl	,	E) .	ND	1.0	્ 1	1.1
c-1,2-Dichloroethene	'ND	1.0	1		Tert-Butyl Alc			ND	10	1	
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl Et			ND	2.0	1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl E			ND	2.0	1	
1,3-Dichloropropane	ND .	1.0	1		Tert-Amyl-Me	thyi Ether (T	AME)	ND	2.0	1	
2,2-Dichloropropane	ND	1.0	1		Ethanol			ND	100	1	
1,1-Dichloropropene	ND	1.0	1					· · · · · · · · · · · · · · · · · · ·			
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	105	74-140			1,2-Dichloroe	lhane-d4		108	74-146		
Toluene-d8	105	88-112			1.4-Bromofiuo			100	74-110		

RL - Reporting Limit

n 11

DF - Dilution Factor , Qual -

Qual - Qualifiers

alscience nvironmental

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

Parsons, Inc.	Date Received:	÷.	03/24/07
100 West Walnut Street	Work Order No:		07-03-1599
Pasadena, CA 91124-0002	Preparation:	· · ·	EPA 5030B
	Method:		EPA 8015B (M)

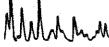
Project DFSP NORWALK / 743447-01000

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date M alyzed	/IS/MSD Batch Number
07-03-1617-1	Agueou	s GC 22	63/27/07	03	5/27/07	070327S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	105	102	68-122	3	0-18	

RPD - Relative Percent Difference, CL - Control Limit

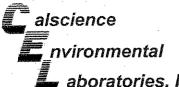
alscience

nvironmental Quality Control - Spike/Spike Duplicate


aboratories, Inc.

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002	Date Received: Work Order No: Preparation: Method:	03/24/07 07-03-1599 EPA 5030B EPA 8260B
--	---	--

Project DFSP NORWALK / 743447-01000


Quality Control Sample ID		Matrix	Instrument	Date Prepared	-	Date Analyzed	MS/MSD Batch Number
GMW-47-0307		Aqueous	GC/MS FF	03/29/07		03/29/07	070329501
8			· · · · · · · · · · · · · · · · · · ·		· · ·		
Parameter	н. И	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CI	Qualifiers
	,	101	100	88-118	1	0-7	
Benzene			111	67-145	0	0-11	
Carbon Tetrachloride	4	110		88-118	- 1	0-7	
Chlorobenzene		100	100		۲ م		i e e
1,2-Dichlorobenzene		96	97	86-116	1	0-8	
1,1-Dichloroethene		106	104	70-130	2	0-25	•
Toluene		99	101	87-123	2	0-8	
Trichloroethene		101	99	79-127	2	0-10	
Vinyl Chloride		106	100	69-129	5	0-13	
Methyl-t-Butyl Ether (MTBE)		107	103	71-131	4	0-13	
Tert-Butyl Alcohol (TBA)		115	104	36-168	11	0-45	
-		104	102	81-123	2	0-9	
Diisopropyl Ether (DIPE)		104	102	72-126	4	0-12	
Ethyl-t-Butyl Ether (ETBE)					3	0-12	
Tert-Amyi-Methyl Ether (TAME)		105	101	72-126	_		
Ethanol		102	89	53-149	13	0-31	

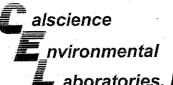
RPD - Relative Percent Difference, CL - Control Limit

FAX: (714) 894-7501 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

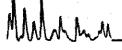

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002	Date Received: Work Order No: Preparation: Method:	03/24/07 07-03-1599 EPA 5030B EPA 8260B
	Triotrio di	

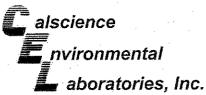
Project DFSP NORWALK / 743447-01000

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date alyzed	MS/MSD Batch Number		
07-03-1945-1	Aqueous	GC/MS FF	03/30/07	03	3/30/07	070330501		
	· · · · · ·	·						
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers		
Benzene	101	101	88-118	0	0-7			
Carbon Tetrachloride	109	107	67-145	2	0-11			
Chlorobenzene	101	100	88-118	0	0-7			
1.2-Dichlorobenzene	97	97	86-116	1	0-8			
1,1-Dichloroethene	103	101	70-130	3	0-25	· .		
Toluene	101	102	87-123	0 -	0-8			
Trichloroethene	99	99	79-127	0	0-10			
Vinyl Chloride	103	97	69-129	6	0-13			
Methyl-t-Butyl Ether (MTBE)	98	95	71-131	3	0-13			
Tert-Butyl Alcohol (TBA)	95	92	36-168	4	0-45			
Diisopropyl Ether (DIPE)	102	100	81-123	2	0-9	· · · ·		
Ethyl-t-Butyl Ether (ETBE)	101	98	72-126	3	0-12			
Tert-Amyl-Methyl Ether (TAME)	99	98	72-126	1	0-12	•		
Ethanol	. 85	85	53-149	0	0-31	·		

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

RPD - Relative Percent Difference, CL - Control Limit


aboratories, Inc.


Parsons, Inc.	Date Received:	N/A
100 West Walnut Street	Work Order No:	07-03-1599
Pasadena, CA 91124-0002	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project: DFSP NORWALK / 743447-01000

Quality Control Sample ID	Matrix	instrument	Date Prepared	Date Analyzed	- +	SD Batch mb er
099-12-247-495	Aqueous	GC 22	03/27/07	03/27/07	0703	27B01
Parameter	LCS %	REC LCSD	%REC <u>%</u> F	REGCL		CL Qualifiers
TPH as Gasoline	108	106	7	78-120	2 0	-10

RPD - Relative Percent Difference, CL - Control Limit

Quality Control - LCS/LCS Duplicate

Parsons, Inc.	Date Received:	N/A *
100 West Walnut Street	Work Order No:	07-03-1599
Pasadena, CA 91124-0002	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)
		•

Project: DFSP NORWALK / 743447-01000

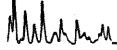
Quality Control Sample ID	Ма	trix	Instrum	ent	Date Analyzed	đ	LCS/LCSD Batch Number			
099-12-382-5	Aqueo	oùs	GC 23		03/28/07	03/28/07		070328B01		
	÷.,		•							
Parameter	Ю	LCS %RE	<u>C</u>	LCSD %RE	<u>C %RE</u>	<u>C CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers	
TPH as Fuel Product		92		91	75-	-117	1	0-13		

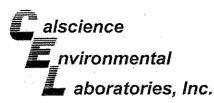
RPD - Relative Percent Difference, CL - Control Limit

FAX: (714) 894-7501 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate


Parsons, Inc.


100 West Walnut Street Pasadena, CA 91124-0002 Date Received:N/AWork Order No:07-03-1599Preparation:EPA 5030BMethod:EPA 8260B

Project: DFSP NORWALK / 743447-01000

Quality Control Sample ID	Matrix	Instrument F	Date Prepared /	Date Analyzed	LCS/LCSD Bate Number	:h
099-10-006-20,813	Aqueous	GC/MS FF (i3/29/0 7 (3/29/07	070329L01	
· ·						
Parameter	LCS %F	REC LCSD %RE	2 <u>%REC CI</u>	<u></u>	RPD CL	<u>Qualifiers</u>
Benzene	99	100	84-120	1	0-8	
Carbon Tetrachloride	104	106	63-147	2	0-10	
Chlorobenzene	101	101	89-119	, O	0-7	
1,2-Dichlorobenzene	98	99	89-119	1	0-9	
1,1-Dichloroethene	101	100	77-125	1	0-16	<i>r</i>
Toluene	100	102	83-125	2	0-9	•
Trichloroethene	97	99	89-119	2	0-8	
Vinyi Chloride	98	98	63-135	0	0-13	
Methyl-t-Butyl Ether (MTBE)	98	99 -	82-118	1	0-13	
Tert-Butyl Alcohol (TBA)	93	. 98	46-154	6	0-32	
Diisopropyl Ether (DIPE)	100	100	81-123	0	0-11	
Ethyl-t-Butyl Ether (ETBE)	99	100	74-122	. 1	0-12	
Tert-Amyl-Methyl Ether (TAME)	100	101	76-124		0-10	
Ethanol	87	93	60-138	8	0-32	

RPD - Relative Percent Difference, CL - Control Limit

Parsons, Inc.	Date Received:	N/A
100 West Walnut Street	Work Order No:	07-03-1599
Pasadena, CA 91124-0002	Preparation:	EPA 5030B
	Method:	EPA 8260B

Project: DFSP NORWALK / 743447-01000

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba Number	tch
099-10-006-20,822	Aqueous	GC/MS FF	03/30/07	03/30/07	070330L01	
	· .					
Parameter	LCS %REC	LCSD %F	EC %RE	<u>C CL</u>	PD RPD CL	<u>Qualifiers</u>
Benzene	102	97	84-	120 4	0-8	
Carbon Tetrachloride	117	108	63-	147 8	0-10	
Chlorobenzene	100	. 99	89-	119 2	0-7	
1,2-Dichlorobenzene	97	95	89-	119 2	2 0-9	
1,1-Dichloroethene	107	100	77-	125 7	0-16	
Toluene	-99	98	83-	125 0	0-9	
Trichloroethene	101	97	89	119 4	0-8	
Vinyl Chloride	106	102	63-	135 5	5 0-13	
Methyl-t-Butyl Ether (MTBE)	109	99	82-	118 1	0 0-13	
Tert-Butyl Alcohol (TBA)	- 111	98	46	154 1:	2 0-32	
Diisopropyl Ether (DIPE)	107	101	81-	123 6	6 O-11	
Ethyl-t-Butyl Ether (ETBE)	107	101	74-	-122 6	0-12	e - 1
Tert-Amyl-Methyl Ether (TAME)	104	. 99	76	124 5	5 0-10	•
Ethanol	100	87	60-	138 1:	3 0-32	·

RPD - Relative Percent Difference , CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 •

TEL:(714) 895-5494 •

FAX: (714) 894-7501

alscience nvironmental aboratories, Inc.

Glossary of Terms and Qualifiers

Work Order Number: 07-03-1599

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
A	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
H	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
. Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Y RECORD	æ 1		2 3	2	30													- - -					Page 6-868+1 SE	28 Zojude :	of 29	05' Revision
CHAIN OF CUSTODY	of	P.O. NO.:	LAB USE ONLY			ANALYSES	·····	(er-OT) i	3) 10 (0) 5 0 (A41-O (ME-OT)	T).20	ON		· · · ·									602/h	Date:	Date:	
CHAIN		17434 49_01000	•			REQUESTED AN		2471	(80109) ((2007) (A18((A182) (2007)) 20()8) T()8) 26	bCi bEG SAC											(L.)			
· · · · · · · · · · · · · · · · · · ·	73AU	DRUNA UK	PROJECT CONTACT:	- L.	MNN.	RE			(80928	01 19 19 19 19 19 19 19 19 19 19 19 19 19	(8) 1997		XXXX	×	×××	×	XXX		XXX	××××	×		flation)	liation)	litation)	and Yellow conies respectively.
	6 WC NCC 13		Hd	91124 Th 21	con	10 DAYS					(9)		WG 7 X	WG-	WG-	21WG-7 X	NWG 7 X	2 WG- 7 X	5 WG 7 X	wG-	WQ 2	· · · · · · · · · · · · · · · · · · ·	Received by: (Signature Affiliation)	Received by: (Signature/Affiliation)	Received by: (Signature/Affiliation)	
· · · · ·	6TN (1			6	SWOSTAN () !						SAMPLING	DATE TIME	3/23 1/2:36	3/23 13:02	3/23 13:20			3/23 14:09	3/23 14:45	3/23 14:49			Rec	*	Rec	ellow to Client.
IENTAL. C.	-1427 894-7501			STALE	E-WAINEET, CANDHI	вне П 72 не	STS MAY APPLY)		•	•	FIELD POINT NAME	(FOR COELT EDF)														hal report, Green and Y
CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.	7440 LINCOLN WAT GARDEN GROVE, CA 92841-1427 TEL: (714) 895-5494 • FAX: (714) 894-7501	TE PARSONS			34		MS MS					SAMPLEID	GMW-61-0307	CMW-60-0309	-49-0309	GMW-57-0307	GMW-58-0309	GMW-59,0307	MW-14-0307	MW14 DUP-0309	TRIP-BUANK		-(Signature)	(Signature)-1	: (Signature)	TRIBUTION: White with final report, Green and Yellow to Client.
CALSCIEN	72 GARDEN TEL: (714) 89	LABORATORY CLIENT.	ADDRESS: 100	CITIZA OF NA	0hh(779			SPECIAL INSTRUCTIONS:			80	USE ONLY	GMWJ-(GMW.	GMW_49.	GMW.	CMW-	GMW	- MM-	PIWM	TRIP		Relinquished	Relinquished by	Relinquished by: (Signature)	Į.

	Page 29 of 29
Calaciance WORK OR	DER #: 07 - 03 - 1599
Laboratories, Inc.	
	Cooler/_ of _/
SAMPLE RECEIPT FORM	
CLIENT: / Arson	DATE: <u>3/24/07</u>
TEMPERATURE – SAMPLES RECEIVED BY:	
CALSCIENCE COURIER:	LABORATORY (Other than Calscience Courier):
Chilled, cooler with temperature blank provided.	°C Temperature blank.
Chilled, cooler without temperature blank.	<u>3.0</u> °C IR thermometer.
Chilled and placed in cooler with wet ice.	Ambient temperature.
Ambient and placed in cooler with wet ice.	
Ambient temperature.	br
°C Temperature blank.	Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not l	ntact) : Not Present:
	Initial://
SAMPLE CONDITION:	
	Yes No N/A
Chain-Of-Custody document(s) received with samples	
Sampler's name indicated on COC	
Sample container label(s) consistent with custody papers Sample container(s) intact and good condition	
Correct containers and volume for analyses requested	
Proper preservation noted on sample label(s)	
VOA vial(s) free of headspace.	
Tedlar bag(s) free of condensation	
	Initial: <u>HT</u>
COMMENTS:	
•	
· · · · · · · · · · · · · · · · · · ·	
I Contraction of the second	